988 resultados para Tropical -cyclones
SWIRLnet : portable anemometer network for wind speed measurements of land-falling tropical cyclones
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Tropical cyclone wind speeds impacting communities are often ‘guestimated’ from analyzing damaged structures. A re-locatable anemometer system is required to enable measurements of wind speeds. This paper discusses design criteria of the tripods and tie down system, proposed deployment of the anemometers, instrumentation, and data logging. Preliminary assessment of the anemometer response indicates a reliable system for 1 second response, however, it is noted that the Australian building code and wind loading standard uses a moving average time of approximately 0.2 seconds for its wind speed design criteria.
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Given this, tropical cyclone wind speeds impacting communities are seldom measured and often only ‘guestimated’ by analysing the extent of damage to structures. In an attempt to overcome this dearth of data, a re-locatable network of anemometers to be deployed prior to tropical cyclone landfall is currently being developed. This paper discusses design criteria of the network’s tripods and tie down system, proposed deployment of the anemometers, instrumentation and data logging. Preliminary assessment of the anemometer response indicates a reliable system for measuring the spectral component of wind with frequencies of approximately 1 Hz. This system limitation highlights an important difference between the capabilities of modern instrumentation and that of the Dines anemometer (around 0.2 seconds) that was used to develop much of the design criteria within the Australian building code and wind loading standard.
Resumo:
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.
Resumo:
During recent years, an increase in the intensity of pre-monsoon tropical cyclones (TCs) is observed over the Arabian Sea. This study suggests that this increase is due to epochal variability in the intensity of TCs and is associated with epochal variability in the storm-ambient vertical wind shear and tropical cyclone heat potential (TCHP). There is a significant increase (0.53kJcm(-2)year(-1)) of TCHP during recent years. The warmer upper ocean helps TCs to sustain or increase their intensity by an uninterrupted supply of sensible and latent heat fluxes from the ocean surface to the atmosphere.
Resumo:
Several studies have shown that tropical heating variations at intraseasonal to interannual time scales may be associated with global climate anomalies. During the past decade, relatively high frequency (daily to weekly) variations in tropical convective activity have also been found to produce significant midlatitude responses within days to weeks. In this study, we investigate the processes by which individual tropical cyclones affect midlatitude weather and climate.
Resumo:
In the present thesis, an attempt has been made to study the characteristics of troposphere and lower stratosphere during the passage of tropical cyclones from a tropical station in India using MST radar. MST radar is an excellent tool for studying various features of the atmosphere from ground to mesospheric heights, as it can be operated continuously with good time and altitude resolution. The major objectives are to identify the multiple layers of reflectivity observed in the atmosphere during cyclones, to study the troposphere characteristics during these cyclones and its dependence on cyclone position and intensity, to detect the waves present in the atmosphere, to study the transport of momentum fluxes and to understand stratosphere. The winds in the troposphere and lower stratosphere are greatly affected by the passage of cyclones; the presence of high reflectivity layers below the tropopause suggests the passage of severe weather systems etc. are some of the major findings of the study. The study can be extended further to understand the circulation and dynamics of the atmosphere associated with the passage of tropical cyclones. The gravity wave generation and its characteristics during the passage of storms is another important aspect to be studied in detail.
Resumo:
Tropical cyclones genesis, movement and intensification are highly dependent on its environment both oceanic and atmospheric. This thesis has made a detailed study on the environmental factors related to tropical cyclones of North Indian Ocean basin. This ocean basin has produced only 6% of the global tropical cyclones annually but it has caused maximum loss of human life associated with the strong winds, heavy rain and particularly storm surges that accompany severe cyclones as they strike the heavily populated coastal areas. Atmospheric factors studied in the thesis are the moisture content of the atmosphere, instability of the atmosphere that produces thunderstorms which are the main source of energy for the tropical cyclone, vertical wind shear to which cyclones are highly sensitive and the Sub-Tropical westerly Jetsteram and its Asian high speed center. The oceanic parameters studied are sea surface temperature and heat storage in the top layer of the ocean. A major portion of the thesis has dealt with the three temporal variabilities of tropical cyclone frequency namely intra-seasonal (mainly the influence of Madden Julian Oscillation), inter- annual (the relation with El Nino Southern Oscillation) and decadal variabilities. Regarding decadal variability, a prominent four decade oscillation in the frequency of both tropical cyclones and monsoon depressions unique to the Indian Ocean basin has been brought out. The thesis consists of 9 chapters.
Resumo:
The automatic tracking technique used by Thorncroft and Hodges (2001) has been used to identify coherent vorticity structures at 850hPa over West Africa and the tropical Atlantic in the ECMWF 40-year reanalysis. The presence of two dominant source regions, north and south of 15ºN over West Africa, for storm tracks over the Atlantic was confirmed. Results show that the southern storm track provides most of the storms that reach the main development region where most tropical cyclones develop. There exists marked seasonal variability in location and intensity of the storms leaving the West African coast, which may influence the likelihood of downstream intensification and longevity. There exists considerable year-to-year variability in the number of West African storm tracks, both in numbers over the land and continuing out over the tropical Atlantic Ocean. While the low-frequency variability is well correlated with Atlantic tropical cyclone activity, West African rainfall and SSTs, the interannual variability is found to be uncorrelated with these. In contrast, variance of the 2-6-day-filtered meridional wind, which provides a synoptic-scale measure of African Easterly Wave activity, shows a significant, positive correlation with tropical cyclone activity at interannual timescales.
Resumo:
Tropical cyclones have been investigated in a T159 version of the MPI ECHAM5 climate model using a novel technique to diagnose the evolution of the 3-dimensional vorticity structure of tropical cyclones, including their full life cycle from weak initial vortex to their possible extra-tropical transition. Results have been compared with reanalyses (ERA40 and JRA25) and observed tropical storms during the period 1978-1999 for the Northern Hemisphere. There is no indication of any trend in the number or intensity of tropical storms during this period in ECHAM5 or in re-analyses but there are distinct inter-annual variations. The storms simulated by ECHAM5 are realistic both in space and time, but the model and even more so the re-analyses, underestimate the intensities of the most intense storms (in terms of their maximum wind speeds). There is an indication of a response to ENSO with a smaller number of Atlantic storms during El Niño in agreement with previous studies. The global divergence circulation responds to El Niño by setting up a large-scale convergence flow, with the center over the central Pacific with enhanced subsidence over the tropical Atlantic. At the same time there is an increase in the vertical wind shear in the region of the tropical Atlantic where tropical storms normally develop. There is a good correspondence between the model and ERA40 except that the divergence circulation is somewhat stronger in the model. The model underestimates storms in the Atlantic but tends to overestimate them in the Western Pacific and in the North Indian Ocean. It is suggested that the overestimation of storms in the Pacific by the model is related to an overly strong response to the tropical Pacific SST anomalies. The overestimation in 2 the North Indian Ocean is likely to be due to an over prediction in the intensity of monsoon depressions, which are then classified as intense tropical storms. Nevertheless, overall results are encouraging and will further contribute to increased confidence in simulating intense tropical storms with high-resolution climate models.
Resumo:
Tropical Cyclones (TC) under different climate conditions in the Northern Hemisphere have been investigated with the Max Planck Institute (MPI) coupled (ECHAM5/MPIOM) and atmosphere (ECHAM5) climate models. The intensity and size of the TC depend crucially on resolution with higher wind speed and smaller scales at the higher resolutions. The typical size of the TC is reduced by a factor of 2.3 from T63 to T319 using the distance of the maximum wind speed from the centre of the storm as a measure. The full three dimensional structure of the storms becomes increasingly more realistic as the resolution is increased. For the T63 resolution, three ensemble runs are explored for the period 1860 until 2100 using the IPCC SRES scenario A1B and evaluated for three 30 year periods at the end of the 19th, 20th and 21st century, respectively. While there is no significant change between the 19th and the 20th century, there is a considerable reduction in the number of the TC by some 20% in the 21st century, but no change in the number of the more intense storms. Reduction in the number of storms occurs in all regions. A single additional experiment at T213 resolution was run for the two latter 30-year periods. The T213 is an atmospheric only experiment using the transient Sea Surface Temperatures (SST) of the T63 resolution experiment. Also in this case, there is a reduction by some 10% in the number of simulated TC in the 21st century compared to the 20th century but a marked increase in the number of intense storms. The number of storms with maximum wind speeds greater than 50ms-1 increases by a third. Most of the intensification takes place in 2 the Eastern Pacific and in the Atlantic where also the number of storms more or less stays the same. We identify two competing processes effecting TC in a warmer climate. First, the increase in the static stability and the reduced vertical circulation is suggested to contribute to the reduction in the number of storms. Second, the increase in temperature and water vapor provide more energy for the storms so that when favorable conditions occur, the higher SST and higher specific humidity will contribute to more intense storms. As the maximum intensity depends crucially on resolution, this will require higher resolution to have its full effect. The distribution of storms between different regions does not, at first approximation, depend on the temperature itself but on the distribution of the SST anomalies and their influence on the atmospheric circulation. Two additional transient experiments at T319 resolution where run for 20 years at the end of the 20th and 21st century, respectively using the same conditions as in the T213 experiments. The results are consistent with the T213 study. The total number of tropical cyclones were similar to the T213 experiment but were generally more intense. The change from the 20th to the 21st century was also similar with fewer TC in total but with more intense cyclones.
Resumo:
A simple theoretical model for the intensification of tropical cyclones and polar lows is developed using a minimal set of physical assumptions. These disturbances are assumed to be balanced systems intensifying through the WISHE (Wind-Induced Surface Heat Exchange) intensification mechanism, driven by surface fluxes of heat and moisture into an atmosphere which is neutral to moist convection. The equation set is linearized about a resting basic state and solved as an initial-value problem. A system is predicted to intensify with an exponential perturbation growth rate scaled by the radial gradient of an efficiency parameter which crudely represents the effects of unsaturated processes. The form of this efficiency parameter is assumed to be defined by initial conditions, dependent on the nature of a pre-existing vortex required to precondition the atmosphere to a state in which the vortex can intensify. Evaluation of the simple model using a primitive-equation, nonlinear numerical model provides support for the prediction of exponential perturbation growth. Good agreement is found between the simple and numerical models for the sensitivities of the measured growth rate to various parameters, including surface roughness, the rate of transfer of heat and moisture from the ocean surface, and the scale for the growing vortex.