995 resultados para Trophic Structure
Resumo:
Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.
Resumo:
Temporal (monthly in three fields for 12 months) and spatial (once in 23 fields during March-April) samplings were conducted in the major soybean (Glycine max)-growing region of the Brazilian Federal District. Fifty-three nematode genera were found in both samplings, but 13 were detected only by the temporal sampling, and one only by the spatial sampling. Fifty-three percent were plant-parasites, 35% were bacterivores, and about 12% were fungivores, predators and omnivores constituted the community that was dominated by the genera Helicotylenchus (40% of total abundance), Acrobeles (15%), Cephalobus (7.6%), Meloidogyne(5.6%) and Pratylenchus (4.9%). Heterodera glycines was not found in this study. There were no differences in ten ecological measurements [Ds, H', Es, T, FF/BF, (FF+BF)/PP, MI, PPI, mMI, and Dorylaimida (%)] between the two sampling types, but differences in indexes d and J'. Plant parasite populations dropped at the end of the crop cycle, remained at low levels during the dry season and the seedling period, then increased again in the crop-growing season. Fungivores maintained their low populations throughout the year, increasing only in June and July, the post-harvest period, when soil fungi decomposed root tissue. The population of bacterivores slightly declined during the dry season and the initial rainy season, but peaked in the middle of the rainy season, apparently associated with soil humidity. In the five most abundant nematodes, those of Acrobeles and Pratylenchus were more populous in wet soils, Cephalobus and Meloidogyne adapted well in dry soils, but Helicotylenchus survived abundantly in a wide range of soil moisture.
Resumo:
In the present thesis entitled” Implications of Hydrobiology and Nutrient dynamics on Trophic structure and Interactions in Cochin backwaters”, an attempt has been made to assess the influence of general hydrography, nutrients and other environmental factors on the abundance, distribution and trophic interactions in Cochin backwater system. The study was based on five seasonal sampling campaigns carried out at 15 stations spread along the Cochin backwater system. The thesis is presented in the following 5 chapters. Salient features of each chapter are summarized below: Chapter 1- General Introduction: Provides information on the topic of study, environmental factors, back ground information, the significance, review of literature, aim and scope of the present study and its objectives.Chapter 2- Materials and Methods: This chapter deals with the description of the study area and the methodology adopted for sample collection and analysis. Chapter 3- General Hydrograhy and Sediment Characteristics: Describes the environmental setting of the study area explaining seasonal variation in physicochemical parameters of water column and sediment characteristics. Data on hydrographical parameters, nitrogen fractionation, phosphorus fractionation and biochemical composition of the sediment samples were assessed to evaluate the trophic status. Chapter 4- Nutrient Dynamics on Trophic Structure and Interactions: Describes primary, secondary and tertiary production in Cochin backwater system. Primary production related to cell abundance, diversity of phytoplankton that varies seasonally, concentration of various pigments and primary productivitySecondary production refers to the seasonal abundance of zooplankton especially copepod abundance and tertiary production deals with seasonal fish landings, gut content analysis and proximate composition of dominant fish species. The spatiotemporal variation, interrelationships and trophic interactions were evaluated by statistical methods. Chapter 5- Summary: The results and findings of the study are summarized in the fifth chapter of the thesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.
Resumo:
Funding for the JC073 cruise was provided by the Natural Environment Research Council (NERC) UK Ocean Acidification (UKOA) research programme’s Benthic Consortium project (NE/H017305/1 to J Murray Roberts). Funding for analytical costs and field work was provided by the Marine Alliance for Science and Technology Scotland (MASTS) (Biodiversity Grant to Ursula FM Witte, 140 SF10003-10). Georgios Kazanidis was funded by a MASTS PhD scholarship.
Resumo:
We assessed the importance of temperature, salinity, and predation for the size structure of zooplankton and provided insight into the future ecological structure and function of shallow lakes in a warmer climate. Artificial plants were introduced in eight comparable coastal shallow brackish lakes located at two contrasting temperatures: cold-temperate and Mediterranean climate region. Zooplankton, fish, and macroinvertebrates were sampled within the plants and at open-water habitats. The fish communities of these brackish lakes were characterized by small-sized individuals, highly associated with submerged plants. Overall, higher densities of small planktivorous fish were recorded in the Mediterranean compared to the cold-temperate region, likely reflecting temperature-related differences as have been observed in freshwater lakes. Our results suggest that fish predation is the major control of zooplankton size structure in brackish lakes, since fish density was related to a decrease in mean body size and density of zooplankton and this was reflected in a unimodal shaped biomass-sizespectrum with dominance of small sizes and low size diversity. Salinity might play a more indirect role by shaping zooplankton communities toward more salt-tolerant species. In a global-warming perspective, these results suggest that changes in the trophic structure of shallow lakes in temperate regions might be expected as a result of the warmer temperatures and the potentially associated increases in salinity. The decrease in the density of largebodied zooplankton might reduce the grazing on phytoplankton and thus the chances of maintaining the clear water state in these ecosystems
Resumo:
We assessed the importance of temperature, salinity, and predation for the size structure of zooplankton and provided insight into the future ecological structure and function of shallow lakes in a warmer climate. Artificial plants were introduced in eight comparable coastal shallow brackish lakes located at two contrasting temperatures: cold-temperate and Mediterranean climate region. Zooplankton, fish, and macroinvertebrates were sampled within the plants and at open-water habitats. The fish communities of these brackish lakes were characterized by small-sized individuals, highly associated with submerged plants. Overall, higher densities of small planktivorous fish were recorded in the Mediterranean compared to the cold-temperate region, likely reflecting temperature-related differences as have been observed in freshwater lakes. Our results suggest that fish predation is the major control of zooplankton size structure in brackish lakes, since fish density was related to a decrease in mean body size and density of zooplankton and this was reflected in a unimodal shaped biomass-size spectrum with dominance of small sizes and low size diversity. Salinity might play a more indirect role by shaping zooplankton communities toward more salt-tolerant species. In a global-warming perspective, these results suggest that changes in the trophic structure of shallow lakes in temperate regions might be expected as a result of the warmer temperatures and the potentially associated increases in salinity. The decrease in the density of largebodied zooplankton might reduce the grazing on phytoplankton and thus the chances of maintaining the clear water state in these ecosystems
Resumo:
Two fish species, one top predator (Imparfinis mirini) and one intermediate detritivorous species (Hisonotus depressicauda), were experimentally manipulated to evaluate their relative importance in structuring the periphytic community, as well as their effects on the other trophic levels. An enclosure experiment was conducted in the Potreirinho creek, a second order tributary of Paranapanema River, SE Brazil. Five treatments were used: enclosure of the predator species. enclosure of the detritivorous species, enclosure of both together, exclusion of all fish species (closed control cage), and cage open to all fish community, (open control). Through direct and indirect effects, I. mirini, when alone gave rise to a trophic cascade that resulted in a positive effect on algal resources. Through direct effects, H. depressicauda. when alone, reduced the amount of organic matter, resulting in a positive indirect effect on algae. In addition, when the two species were enclosed together, only the effects determined by the detritivorous species were present. The results indicate the important role of the intermediate detritivorous species in the maintenance of the composition and trophic structure of the analyzed community by reducing the effects caused by the top predator.
Resumo:
The ichthyofauna of 24 stretches of streams, all of 100 m length and of fifth or lower order and most of second and third order, were sampled along four left bank tributaries (Rio do Peixe, Rio Aguapei, Rio Sao Jose dos Dourados, lower Rio Tiete of the main channel of the Rio Parana in the state of São Paulo, southeastern Brazil. Sampling of the fish fauna at each of the six sites in the four basins incorporated a standardized fish collecting methodology and a standardized documentation of environmental data serving as the basis for a comparative analysis of the collecting locations. The 8,189 fish specimens collected represented six orders, 18 families, 42 genera, and 56 species, with a total biomass of 28.8 kg. Approximately 52% of the collected species were characiforms, 28% siluriforms, 9% gymnotiforms, 5% cyprinodontiforms, 4% perciforms, and 2% synbranchiforms. The most abundant of the species were the characiforms Astyanax altiparanae (15% of total) and Knodus moenkhausii (12% of total). The two species with the largest overall biomasses were A. altiparanae (34% of total biomass) and the siluriform Hypostomus sp. (8% of total biomass). Analysis of the trophic structure of the studied ichthyofauna indicated that the 10 numerically dominant species across the 24 sampled streams can be grouped into five guilds that are in decreasing order of numerical importance: omnivores, insectivores, insectivores/invertivores, periphytivores, and algivores. Species richness in the sampled stream stretches varied from six to 20 species with an average richness of 14. The species richness estimated by extrapolation for all 24 sampled stream stretches was 67 species. The Characidae are predominant among the collected specimens with approximately 50% of both individuals and biomass, a fact hypothesized to be a function of several attributes typical of the family. Six of the 56 collected species were new to science and six other species are of indefinite taxonomic status and require further analysis in order to determine their identity.
Resumo:
In this study, we used data from both experiments and mathematical simulations to analyze the consequences of the interacting effects of intraguild predation (IGP), cannibalism and parasitism occurring in isolation and simultaneously in trophic interactions involving two blowfly species under shared parasitism. We conducted experiments to determine the short-term response of two blowfly species to these interactions with respect to their persistence. A mathematical model was employed to extend the results obtained from these experiments to the long-term consequences of these interactions for the persistence of the blowfly species. Our experimental results revealed that IGP attenuated the strength of the effects of cannibalism and parasitism between blowfly host species, increasing the probability of persistence of both populations. The simulations obtained from the mathematical model indicated that IGP is a key interaction for the long-term dynamics of this system. The presence of different species interacting in a tri-trophic system relaxed the severity of the effects of a particular interaction between two species, changing species abundances and promoting persistence through time. This pattern was related to indirect interactions with a third species, the parasitoid species included in this study. © 2012 The Society of Population Ecology and Springer Japan.
Resumo:
Structure of intertidal and subtidal benthic macrofauna in the northeastern region of Todos os Santos Bay (TSB), northeast Brazil, was investigated during a period of two years. Relationships with environmental parameters were studied through uni- and multivariate statistical analyses, and the main distributional patterns shown to be especially related to sediment type and content of organic fractions (Carbon, Nitrogen, Phosphorus), on both temporal and spatial scales. Polychaete annelids accounted for more than 70% of the total fauna and showed low densities, species richness and diversity, except for the area situated on the reef banks. These banks constitute a peculiar environment in relation to the rest of the region by having coarse sediments poor in organic matter and rich in biodetritic carbonates besides an abundant and diverse fauna. The intertidal region and the shallower area nearer to the oil refinery RLAM, with sediments composed mainly of fine sand, seem to constitute an unstable system with few highly dominant species, such as Armandia polyophthalma and Laeonereis acuta. In the other regions of TSB, where muddy bottoms predominated, densities and diversity were low, especially in the stations near the refinery. Here the lowest values of the biological indicators occurred together with the highest organic compound content. In addition, the nearest sites (stations 4 and 7) were sometimes azoic. The adjacent Caboto, considered as a control area at first, presented low density but intermediate values of species diversity, which indicates a less disturbed environment in relation to the pelitic infralittoral in front of the refinery. The results of the ordination analyses evidenced five homogeneous groups of stations (intertidal; reef banks; pelitic infralittoral; mixed sediments; Caboto) with different specific patterns, a fact which seems to be mainly related to granulometry and chemical sediment characteristics.