258 resultados para Trivalent
Resumo:
X-ray photoelectron spectroscopy has been used to investigate the core electron binding energies within an isomorphous series of lanthanoid complexes; [LnL(1)] where Ln=La-Lu (except Pm) and H3L is the heptadentate ligand 2,2',2-tris(salicylideneimino)triethylamine. This study also examines spin-orbit coupling of the trivalent lanthanoids bound to this organic ligand and addresses the issue of satellite peaks in the spectra. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
INTRODUCTION: Snake bite, a problem in public health, generally occurs where there is no electric power. METHODS: A comparative clinical study was conducted with 102 victims of Bothrops snake bite, from the state of Amazonas, Brazil; 58 victims were treated with liofilizated trivalent antivenom serum (SATL) and 44 victims treated with liquid bivalent and monovalent antivenom serum (SAMBL). RESULTS: 17% (10/58) of patients presented adverse effects with the SATL and 25% (11/44) with the SAMBL. CONCLUSIONS: There was no statistic difference in number of adverse effects between the two types of snake bite antivenom.
Resumo:
Different formulations of trivalent oral poliomyelitis vaccine were tested, in order to obtain better thermostability, reduce corrosion of machinery and improve production costs. Magnesium chloride, sucrose, arginine and 199-Hank's medium were used in the formulations. The most appropriate formulation was a mixture of MgCl2 and arginine, which was highly thermostable, and had low production costs. The low corrosive formulation was rejected, due to low thermostability on storage.
Resumo:
BACKGROUND: In this study we compared the immunogenicity of influenza vaccine administered intradermally to the standard intramuscular vaccination in lung transplant recipients. METHODS: Patients were randomized to receive the trivalent inactivated seasonal 2008-9 influenza vaccine containing either 6 μg (intradermal) or 15 μg (intramuscular) of hemagglutinin per viral strain. Immunogenicity was assessed by measurement of geometric mean titer of antibodies using the hemagglutination-inhibition (HI) assay. Vaccine response was defined as a 4-fold or higher increase of antibody titers to at least one vaccine antigen. RESULTS: Eighty-five patients received either the intradermal (n = 41) or intramuscular (n = 44) vaccine. Vaccine response was seen in 6 of 41 patients (14.6%) in the intradermal vs 8 of 43 (18.6%) in the intramuscular group (p = 0.77). Seroprotection (HI ≥1:32) was 39% for H1N1, 83% for H3N2 and 29% for B strain in the intradermal group vs 28% for H1N1, 98% for H3N2 and 58% for B strain in the intramuscular group (p = 0.36 for H1N1, p = 0.02 for H3N2, p < 0.01 for B). Mild adverse events were seen in 44% of patients in the intradermal group and 34% in the intramuscular group (p = 0.38). CONCLUSIONS: Immunogenicity of the 2008-9 influenza vaccine given intradermally or intramuscularly was overall poor in lung transplant recipients. Novel strategies for influenza vaccination in this population are needed.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
Chromium(III) at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC) and determined by inductively coupled plasma optical emision spectrometry (ICP OES). The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5±4.7 µg for Cr(III). The method was applied to the determination of Cr(III) and Cr(VI) in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper).
Resumo:
Solid state cinnamylidenepyruvate of trivalent lanthanides (except for promethium) and yttrium, were prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal behavior of these compounds in a dynamic CO2 atmosphere. The results obtained showed significative differences on the thermal stability and thermal decomposition of these compounds, with regard to the thermal behavior study in a dynamic air atmosphere.
Resumo:
Solid state compounds M-2-Cl-BP, where 2-Cl-BP is 2-chlorobenzylidenepyruvate and M represents Al, Ga, In, and Sc were prepared. X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition of the compounds.
Resumo:
Solid state compounds of 4-methylbenzylidenepyruvate with Al(III), Ga(III), In(III) and Sc(III) have been synthesized. Complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition of these compounds.
Resumo:
Solid-state M-4-MeO-Bz compounds, where M stands for trivalent La, Ce, Pr, Nd and Sm and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, polymorphic transformation, ligand's denticity, thermal behaviour and thermal decomposition of the isolated compounds.
Resumo:
Solid-state Ln -3-MeO-Bz compounds, where Ln stands for lighter trivalent lanthanides (La Sm) and 3-methoxybenzoate, have been synthesized. Thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information concerning the composition, dehydration, polymorphic transformation, thermal behaviour and thermal decomposition of the synthesized compounds.
Resumo:
Solid State Ln-L compounds, where Ln stands for light trivalent lanthanides (La - Gd) and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, thermal behaviour and thermal decomposition of the isolated compounds.
Resumo:
Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides (Tb-Lu) and L is malonate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, TG-FTIR system, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The dehydration of the compounds begins at 303 K and the anhydrous compounds are stable up to 548 K. The results also provided information concerning the ligand's denticity, thermal behaviour and identification of some gaseous products evolved during the thermal decomposition of these compounds.
Resumo:
The new ligand 6,6 ''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)2,2':6 ',2 ''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2 ''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1 : 2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1 : 1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1 : 2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-Ray crystallographic structures of the ligand and of its 1 : 1 complex with Y(III) were also obtained. The NMR and mass spectra of [Pd(CyMe4-BTTP)](n)(2n+) are consistent with a dinuclear double helical structure (n = 2). In the absence of a phase-modifier, CyMe4-BTTP in n-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (+/-20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid. The metal(III) cations are extracted as the 1 : 1 complex from nitric acid. The generally low distribution coefficients observed compared with the BTBPs arise because the 1 : 1 complex of CyMe4-BTTP is considerably less hydrophobic than the 1 : 2 complexes formed by the BTBPs. In M(BTTP)(3+) complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal.
Resumo:
Bis-triazinylphenanthroline ligands (BTPhens), which contain additional alkyl (n-butyl and sec-butyl) groups attached to the triazine rings, have been synthesized, and the effects of this alkyl substitution on their extraction properties with Ln(III) and An(III) cations in simulated nuclear waste solutions have been studied. The speciation of n-butyl-substituted ligand (C4- BTPhen) with some trivalent lanthanide nitrates was elucidated by 1 H-NMR spectroscopic titrations. These experiments have shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at higher Ln(III) concentrations, and the relative stability of 2:1 to 1:1 BTPhen-Ln(III) complexes varied with different lanthanides. As expected, sec-butylsubstituted ligand (sec-C4 BTPhen) showed higher solubility than C4-BTPhen in certain diluents. A greater separation factor (SFAm/Eu = ca. 210) was observed for sec-C4-BTPhen compared to C4-BTPhen (SFAm/Eu = ca. 125) in 1-octanol at 4 M HNO3 solutions. The greater separation factor may be due to the higher solubility of the 2:1 complex for sec-C4-BTPhen at the interface than the 1:1 complex of C4-BTPhen.