811 resultados para Triticum turgisecale
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Avaliou-se o efeito de diferentes níveis do composto enzimático Natugrain Blend L®, que contém endo-xilanase e endo-beta-glucanase, sobre a digestibilidade dos nutrientes e a energia do triticale pela tilápia-do-nilo. O método para a determinação da digestibilidade foi o indireto, utilizando-se o óxido de crômio III (0,10%). O delineamento experimental foi inteiramente ao acaso, com cinco tratamentos e três repetições. O nível de substituição da dieta-referência foi 50,0% pelo triticale. Os tratamentos foram 0,0; 150,0; 300,0; 450,0 e 600,0mg kg-1 de Natugrain Blend L, que contém 800 unidades g-1 de endo-1,3(4)-β-glucanase (BGU) e 36.600 unidades g-1 de endo-1,4-β-xylanase (EXU). Os coeficientes de digestibilidade aparente foram: da matéria seca, 76,42; 74,01; 83,39; 82,97 e 78,34%; da proteína bruta 88,19; 88,39; 90,52; 92,05 e 88,34%, da energia bruta 75,93; 71,31; 81,78; 80,27 e 78,62%, respectivamente, para os níveis de inclusão na dieta 0,0; 150,0; 300,0; 450,0 e 600,0mg kg-1 de Natugrain Blend L.Os resultados demonstram que 300mg kg-1 do complexo de enzimas foi suficiente para aumentar o coeficiente de digestibilidade aparente da matéria seca. O composto de enzimas pode ser utilizado para aumentar a eficiência de aproveitamento dos nutrientes do triticale.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.
Resumo:
NF-Y is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 & 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in 3-4 separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the thirteen genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane bound complexes required for the conversion of solar energy into chemical energy and rate limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.
Resumo:
Nuclear Factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction center subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.
Resumo:
Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.
Resumo:
Liquid forms of phosphorus (P) have been shown to be more effective than granular P for promoting cereal growth in alkaline soils with high levels of free calcium carbonate on Eyre Peninsula, South Australia. However, the advantage of liquid over granular P forms of fertiliser has not been fully investigated across the wide range of soils used for grain production in Australia. A glasshouse pot experiment tested if liquid P fertilisers were more effective for growing spring wheat (Triticum aestivum L.) than granular P (monoammonium phosphate) in 28 soils from all over Australia with soil pH (H2O) ranging from 5.2 to 8.9. Application of liquid P resulted in greater shoot biomass, as measured after 4 weeks' growth (mid to late tillering, Feeks growth stage 2-3), than granular P in 3 of the acidic to neutral soils and in 3 alkaline soils. Shoot dry matter responses of spring wheat to applied liquid or granular P were related to soil properties to determine if any of the properties predicted superior yield responses to liquid P. The calcium carbonate content of soil was the only soil property that significantly contributed to predicting when liquid P was more effective than granular P. Five soil P test procedures (Bray, Colwell, resin, isotopically exchangeable P, and diffusive gradients in thin films (DGT)) were assessed to determine their ability to measure soil test P on subsamples of soil collected before the experiment started. These soil test values were then related to the dry matter shoot yields to assess their ability to predict wheat yield responses to P applied as liquid or granular P. All 5 soil test procedures provided a reasonable prediction of dry matter responses to applied P as either liquid or granular P, with the resin P test having a slightly greater predictive capacity on the range of soils tested. The findings of this investigation suggest that liquid P fertilisers do have some potential applications in non-calcareous soils and confirm current recommendations for use of liquid P fertiliser to grow cereal crops in highly calcareous soils. Soil P testing procedures require local calibration for response to the P source that is going to be used to amend P deficiency.
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
In wheat, tillering and water-soluble carbohydrates (WSCs) in the stem are potential traits for adaptation to different environments and are of interest as targets for selective breeding. This study investigated the observation that a high stem WSC concentration (WSCc) is often related to low tillering. The proposition tested was that stem WSC accumulation is plant density dependent and could be an emergent property of tillering, whether driven by genotype or by environment. A small subset of recombinant inbred lines (RILs) contrasting for tillering was grown at different plant densities or on different sowing dates in multiple field experiments. Both tillering and WSCc were highly influenced by the environment, with a smaller, distinct genotypic component; the genotypeenvironment range covered 350750 stems m(2) and 25210mg g(1) WSCc. Stem WSCc was inversely related to stem number m(2), but genotypic rankings for stem WSCc persisted when RILs were compared at similar stem density. Low tilleringhigh WSCc RILs had similar leaf area index, larger individual leaves, and stems with larger internode cross-section and wall area when compared with high tilleringlow WSCc RILs. The maximum number of stems per plant was positively associated with growth and relative growth rate per plant, tillering rate and duration, and also, in some treatments, with leaf appearance rate and final leaf number. A common threshold of the red:far red ratio (0.390.44; standard error of the difference0.055) coincided with the maximum stem number per plant across genotypes and plant densities, and could be effectively used in crop simulation modelling as a ocut-off' rule for tillering. The relationship between tillering, WSCc, and their component traits, as well as the possible implications for crop simulation and breeding, is discussed.
Resumo:
Soil incorporation of metalaxyl [methyl N-(2-methoxyacetyl)-N-(2,6,xylyl)-DL-alaninate] significantly enhanced root colonization of the vesicular-arbuscular (VA) mycorrhizal fungi Glomus fasciculatum associated with wheat. The stimulatory response of VA mycorrhizal fungi to low concentration of metalaxyl resulted in increased plant biomass production, nutrient uptake and grain yield of wheat. However, higher concentrations of metalaxyl, particularly 2.5 ppm of metalaxyl affected the mycorrhizal infection and seed yield of wheat, Addition of urban compost to an extent ameliorated the toxic effect of fungicide on VA mycorrhizal colonization, plant growth and yield of wheat when compared to unamended soil.
Resumo:
硬粒小麦DR147授以超甜玉米(ss7700)的花粉后,83.4%的小麦柱头上的玉米花粉萌发,花粉管经由花柱抵达胚囊,受精率和成胚率分别为44.4%和42.6%。杂种合子核型高度不稳定,在细胞分裂过程中来自父本玉米的染色体逐渐被排除,最后形成硬粒小麦单倍体胚。尽管硬粒小麦×玉米存在较高频率的双受精(32.7%),同时形成胚和胚乳,但由于胚乳发育异常及败育,最后难以获得有生活力的种子。 硬粒小麦授以玉米的花粉后用100ppm 2,4-D进行处理(浸蘸穗子或向穗茎节间注射),可以延长杂种胚在植株上的存活时间。授粉9-13天后将颖果表面灭菌后在实体显微镜下剥取不同发育时期的幼胚,分别接种于含或不含2.0mg/l2,4-D,3%蔗糖,200mg/l水解酪蛋白,146mgl谷氨酰氨,300mg/l天冬氨酸的MS固体培养基上进行胚拯救或诱导愈伤组织。结果表明,发育程度较高的胚(具盾片的胚,长度大于0.5mm)容易通过胚拯救获得单倍体植株或诱导出愈伤组织,而发育程序较低的胚(琏形胚,梨形胚,鱼雷形胚,长度小于0.3mm)不易获得单倍体植株或诱导愈伤组织而常常变褐,最后死亡。如果将这些胚预先接种子含0.1mg/l BAP,3%蔗糖,200mg/l水解酪蛋白,146mg/l谷氨酰胺,300mg/l天冬氮酸的MS固体培养基上预培养20天,再转移至愈伤组织诱导培养基上则易于产生愈伤组织,通过选择和继代培养可以获得淡黄色,结构致密的胚性愈伤组织。将这种愈伤组织转移至含1.Omg/l BAP和0.1mg/l NAA的MS固体分化培养基上培养20天后即可分化出小植株和绿色芽点,将这些小植株和绿色芽点再在分化培养基上继代培养20天,形成大量根系发达的健壮植株及次生小植株。其中一个胚性愈伤组织系的分化频率高达70. 6%。从获得的100余棵植株中随机取6棵再生植株进行根尖细胞染色体计数发现它们均为单倍体。具发达根系的健壮植株移入实验田后成活率可达80%以上,并生长至成熟。 利用硬粒小麦×玉米建立的单倍性胚性愈伤组织系进行了原生质体培养的研究。胚性愈伤组织经液体悬浮培养4个月后形成了生长迅速的由大小不同(0.5mm至5mm)的愈伤组织块组成的混合悬浮愈伤组织系,酶解试验表明2.0%纤维素酶RS和0.5%离析酶Y-23组合效果最好,而液体悬浮培养物和固体培养的愈伤组织(在酶解时用锋利的解剖刀片切成1mm左右的块)都能释放出大量原生质体,但悬浮培养物释放出的原生质体状态较好,胞质更浓厚,用KM8p培养基以琼脂糖包埋培养方式培养时得到了较高的(5%左右)分裂频率。 原生质体再生的小愈伤组织经增殖、筛选后可获得胚性愈性组织,将其转移至分化培养基Ⅰ(0.2mg/l 2,4-D,1.0mg/l BAP,0.1mg/l NAA,3%蔗糖,200mg/l水解酩蛋白,146mg/l谷氨酸胺,300m8/l天冬氨酸的MS固体培养基)和Ⅱ(不含2,4-D,其它成份同I)上进行分步分化培养可再生出完整植株,分化频率约为20%。从获得的22棵原生质体再生植株中,随机取4株进行根尖细胞染色体计数表明,它们均为单倍体。