10 resultados para Tripogon loliiformis
Resumo:
There is an urgent need to develop crops that can withstand future climates. Results from this thesis demonstrated that a native Australian resurrection grass exhibits structural, physiological and metabolic strategies to tolerate drying. These strategies may be utilized for the generation of stress tolerant crops.
Resumo:
Tripogon loliiformis is a desiccation-tolerant grass that occurs throughout mainland Australia. There has been recent interest in this species as a model system for understanding desiccation tolerance in a native grass at the structural, molecular and physiological levels. However, not much is known about the biology and natural history of this species, despite its widespread geographic distribution and remarkable capability of withstanding prolonged drying. We provide an overview of the genus by consolidating information from a wide variety of sources. We report a variety of new and interesting observations on the general biology, ecology and desiccation response of T. loliiformis and conclude by highlighting areas for future research.
Resumo:
Research in this thesis focussed on the improvement of agricultural crops in increasing water use efficiency that impacts global crop productivity. The study identified key genetic regulatory mechanisms that the resurrection plant Tripogon loliiformis utilises to tolerate desiccation. Due to the conserved nature of the pathways involved, this information can be transferred for the enhancement of drought tolerance and water use efficiency in agricultural crops. Specifically this study used high throughput sequencing, microscopy and plant transformation to further the understanding of post-transcriptional regulatory mechanisms. It was shown that T. loliiformis uses microRNAs to regulate pro-survival autophagy pathways to tolerate desiccation.
Resumo:
Resurrection plants can withstand extreme dehydration to an air-dry state and then recover upon receiving water. Tripogon loliiformis (F.Muell.) C.E.Hubb. is a largely uncharacterised native Australian desiccation-tolerant grass that resurrects from the desiccated state within 72 h. Using a combination of structural and physiological techniques the structural and physiological features that enable T. loliiformis to tolerate desiccation were investigated. These features include: - (i) a myriad of structural changes such as leaf folding, cell wall folding and vacuole fragmentation that mitigate desiccation stress; - (ii) potential role of sclerenchymatous tissue within leaf folding and radiation protection; - (iii) retention of ~70% chlorophyll in the desiccated state; - (iv) early response of photosynthesis to dehydration by 50% reduction and ceasing completely at 80 and 70% relative water content, respectively; - (v) a sharp increase in electrolyte leakage during dehydration, and; - (vi) confirmation of membrane integrity throughout desiccation and rehydration. Taken together, these results demonstrate that T. loliiformis implements a range of structural and physiological mechanisms that minimise mechanical, oxidative and irradiation stress. These results provide powerful insights into tolerance mechanisms for potential utilisation in the enhancement of stress-tolerance in crop plants.
Resumo:
This thesis provides new knowledge on an understudied group of grasses, some of which are resurrection grasses (i.e. able to withstand extreme drought). The sole Australian species (Tripogon loliiformis) is morphologically diverse and could be more than one species. This study sought to determine how many species of Tripogon occur in Australia, their relationships to other species in the genus and to two other genera of resurrection grasses (Eragrostiella and Oropetium). Results of the research indicate there is not enough evidence, from DNA sequence data, to warrant splitting up T. loliiformis into multiple species. The extensive morphological diversity seems to be influenced by environmental conditions. The three genera are so closely related that they could be grouped into a single genus. This new knowledge opens up pathways for future investigations, including studying genes responsible for desiccation tolerance and the conservation of native grasses that occur in rocky habitats.
Resumo:
Sustainable management of native pastures requires an understanding of what the bounds of pasture composition, cover and soil surface condition are for healthy pastoral landscapes to persist. A survey of 107 Aristida/Bothriochloa pasture sites in inland central Queensland was conducted. The sites were chosen for their current diversity of tree cover, apparent pasture condition and soil type to assist in setting more objective bounds on condition ‘states’ in such pastures. Assessors’ estimates of pasture condition were strongly correlated with herbage mass (r = 0.57) and projected ground cover (r = 0. 58), and moderately correlated with pasture crown cover (r = 0.35) and tree basal area (r = 0.32). Pasture condition was not correlated with pasture plant density or the frequency of simple guilds of pasture species. The soil type of Aristida/Bothriochloa pasture communities was generally hard-setting, low in cryptogam cover but moderately covered with litter and projected ground cover (30–50%). There was no correlation between projected ground cover of pasture and estimated ground-level cover of plant crowns. Tree basal area was correlated with broad categories of soil type, probably because greater tree clearing has occurred on the more fertile, heavy-textured clay soils. Of the main perennial grasses, some showed strong soil preferences, for example Tripogon loliiformis for hard-setting soils and Dichanthium sericeum for clays. Common species, such as Chrysopogon fallax and Heteropogon contortus, had no strong soil preference. Wiregrasses (Aristida spp.) tended to be uncommon at both ends of the estimated pasture condition scale whereas H. contortus was far more common in pastures in good condition. Sedges (Cyperaceae) were common on all soil types and for all pasture condition ratings. Plants identified as increaser species were Tragus australianus, daisies (Asteraceae) and potentially toxic herbaceous legumes such as Indigofera spp. and Crotalaria spp. Pasture condition could not be reliably predicted based on the abundance of a single species or taxon but there may be scope for using integrated data for four to five ecologically contrasting plants such as Themeda triandra with daisies, T. loliiformis and flannel weeds (Malvaceae).
Resumo:
Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis , by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.
Resumo:
A new species of Tripogon from western China (Sichuan Province), T. debilis L. B. Cai, is described and illustrated. This species is similar to both T. chinensis (Franchet) Hackel and T sichuanicus S. M. Phillips & S. L. Chen, but distinguished from these two species by its pendent pi spikes, relatively tong glumes and lemma awns, denticulate upper glumes, and its paleas strikingly shorter than the lemmas.