12 resultados para Tripneustes ventricosus
Resumo:
Sea urchins are common benthic organisms on coastal ecosystems of tropical and temperate shallow waters. The impact of sea urchins populations in shore communities is density-dependent, and therefore, knowledge of the life history of these animals is important to understand these interactions. Between 2000 and 2005 a population boom of Tripneustes ventricosus was observed in the Fernando de Noronha Archipelago. In 2004 a research program was started to monitor the population dynamics of T. ventricosus in the archipelago, when it noted a lack of basic information on the biology and reproduction of this species, despite its broad geographic distribution and economic importance in parts of its occurrence. In this context, this work focuses on the reproductive biology of T. ventricosus with emphasis on the description of the gametogenic stages. Between December 2006 and July 2007, ten urchins were collected by snorkeling in two sites of the archipelago, totaling 120 individuals. Gametogenic stages were described for both sexes through microscopic analysis, and were defined as: Recovery, Growing, Premature, Mature and Spawning. Results showed increasing in Gonad index throughout of months of sampling and suggest that the reproductive cycle of the species in the archipelago is annual
Resumo:
Sea urchins are benthic macroinvertebrates that inhabit shallow coastal waters in tropical and temperate zones. Urchins are usually classified as generalists or omnivores as they can adjust their diet according to the food resources available in the environment. Due to the strong grazing pressure they may exert, urchins have an important role in marine ecosystems, occupying different trophic levels and stimulating the intensification of the dynamics of communities where they occur. In 2004, a monitoring program focused on the population dynamics of the white sea urchin, Tripneustes ventricosus, has been initiated in the Fernando de Noronha Archipelago. At the same time, a surprisingly lack of information on the species biology has been noted, despite their wide geographical distribution and economic importance in many parts of its range. Hence, this work was developed to provide information on the feeding habits of T. ventricosus in the archipelago. Ten specimens were collected between December 2006 and July 2007 at two sites of the archipelago, Air France and Sueste Bay for biometrics and analysis of gut contents. Test diameters ranged from 9.19 cm (± 1.1) to 10.08 cm (± 0.58). Calculated stomach repletion index (IRE) was higher (p <0.05) in the Air France site and also during January and July. The IRE was not correlated to the gonad index. Fifteen different species of algae were detected in a total of 120 stomachs examined: 4 Chlorophytas, 4 Phaeophytas and 6 Rhodophytas. Food diversity (p <0.05) was higher in December 2006 and January 2007. Although several items had a high frequency of occurrence, they were low represented in terms of weight, and consequently, had a low level of relative importance. The brown algae Dictyopteris spp and Dictyota spp, followed by the green algae Caulerpa verticillata accounted for the greatest importance in T. ventricosus diet, comprising about 90% of the consumed items
Resumo:
Sea urchins are common benthic organisms on coastal ecosystems of tropical and temperate shallow waters. The impact of sea urchins populations in shore communities is density-dependent, and therefore, knowledge of the life history of these animals is important to understand these interactions. Between 2000 and 2005 a population boom of Tripneustes ventricosus was observed in the Fernando de Noronha Archipelago. In 2004 a research program was started to monitor the population dynamics of T. ventricosus in the archipelago, when it noted a lack of basic information on the biology and reproduction of this species, despite its broad geographic distribution and economic importance in parts of its occurrence. In this context, this work focuses on the reproductive biology of T. ventricosus with emphasis on the description of the gametogenic stages. Between December 2006 and July 2007, ten urchins were collected by snorkeling in two sites of the archipelago, totaling 120 individuals. Gametogenic stages were described for both sexes through microscopic analysis, and were defined as: Recovery, Growing, Premature, Mature and Spawning. Results showed increasing in Gonad index throughout of months of sampling and suggest that the reproductive cycle of the species in the archipelago is annual
Resumo:
Sea urchins are benthic macroinvertebrates that inhabit shallow coastal waters in tropical and temperate zones. Urchins are usually classified as generalists or omnivores as they can adjust their diet according to the food resources available in the environment. Due to the strong grazing pressure they may exert, urchins have an important role in marine ecosystems, occupying different trophic levels and stimulating the intensification of the dynamics of communities where they occur. In 2004, a monitoring program focused on the population dynamics of the white sea urchin, Tripneustes ventricosus, has been initiated in the Fernando de Noronha Archipelago. At the same time, a surprisingly lack of information on the species biology has been noted, despite their wide geographical distribution and economic importance in many parts of its range. Hence, this work was developed to provide information on the feeding habits of T. ventricosus in the archipelago. Ten specimens were collected between December 2006 and July 2007 at two sites of the archipelago, Air France and Sueste Bay for biometrics and analysis of gut contents. Test diameters ranged from 9.19 cm (± 1.1) to 10.08 cm (± 0.58). Calculated stomach repletion index (IRE) was higher (p <0.05) in the Air France site and also during January and July. The IRE was not correlated to the gonad index. Fifteen different species of algae were detected in a total of 120 stomachs examined: 4 Chlorophytas, 4 Phaeophytas and 6 Rhodophytas. Food diversity (p <0.05) was higher in December 2006 and January 2007. Although several items had a high frequency of occurrence, they were low represented in terms of weight, and consequently, had a low level of relative importance. The brown algae Dictyopteris spp and Dictyota spp, followed by the green algae Caulerpa verticillata accounted for the greatest importance in T. ventricosus diet, comprising about 90% of the consumed items
Resumo:
Sea urchins are common benthic organisms on coastal ecosystems of tropical and temperate shallow waters. The impact of sea urchins populations in shore communities is density-dependent, and therefore, knowledge of the life history of these animals is important to understand these interactions. Between 2000 and 2005 a population boom of Tripneustes ventricosus was observed in the Fernando de Noronha Archipelago. In 2004 a research program was started to monitor the population dynamics of T. ventricosus in the archipelago, when it noted a lack of basic information on the biology and reproduction of this species, despite its broad geographic distribution and economic importance in parts of its occurrence. In this context, this work focuses on the reproductive biology of T. ventricosus with emphasis on the description of the gametogenic stages. Between December 2006 and July 2007, ten urchins were collected by snorkeling in two sites of the archipelago, totaling 120 individuals. Gametogenic stages were described for both sexes through microscopic analysis, and were defined as: Recovery, Growing, Premature, Mature and Spawning. Results showed increasing in Gonad index throughout of months of sampling and suggest that the reproductive cycle of the species in the archipelago is annual
Resumo:
Sea urchins are benthic macroinvertebrates that inhabit shallow coastal waters in tropical and temperate zones. Urchins are usually classified as generalists or omnivores as they can adjust their diet according to the food resources available in the environment. Due to the strong grazing pressure they may exert, urchins have an important role in marine ecosystems, occupying different trophic levels and stimulating the intensification of the dynamics of communities where they occur. In 2004, a monitoring program focused on the population dynamics of the white sea urchin, Tripneustes ventricosus, has been initiated in the Fernando de Noronha Archipelago. At the same time, a surprisingly lack of information on the species biology has been noted, despite their wide geographical distribution and economic importance in many parts of its range. Hence, this work was developed to provide information on the feeding habits of T. ventricosus in the archipelago. Ten specimens were collected between December 2006 and July 2007 at two sites of the archipelago, Air France and Sueste Bay for biometrics and analysis of gut contents. Test diameters ranged from 9.19 cm (± 1.1) to 10.08 cm (± 0.58). Calculated stomach repletion index (IRE) was higher (p <0.05) in the Air France site and also during January and July. The IRE was not correlated to the gonad index. Fifteen different species of algae were detected in a total of 120 stomachs examined: 4 Chlorophytas, 4 Phaeophytas and 6 Rhodophytas. Food diversity (p <0.05) was higher in December 2006 and January 2007. Although several items had a high frequency of occurrence, they were low represented in terms of weight, and consequently, had a low level of relative importance. The brown algae Dictyopteris spp and Dictyota spp, followed by the green algae Caulerpa verticillata accounted for the greatest importance in T. ventricosus diet, comprising about 90% of the consumed items
Resumo:
Under the global change scenario, the possible effects of ocean warming were investigated on the larvae of five species of Caribbean Echinoids: Echinometra lucunter, Echinometra viridis, Clypeaster rosaceus, Tripneustes ventricosus and Lytechinus williamsi. Their thermal tolerance was evaluated rearing them for six days under different temperature regimes (26, 28, 30, 32, 34, 36°C). The larval sensitivity to the treatments was evaluated on the base of survival and growth. The rearing at higher temperatures has revealed a great suffering state of the larvae by inducing both reduction of live larvae and abnormality in their development. The extent of impact of the treatments varied from species to species, evidencing different levels of thermal tolerance. Anyway, higher temperature treatments have shown a general lethal threshold at about 34°C for most of the species. As an exception, the lethal threshold of Echinometra species was 36°C, few larvae of which being still capable of survive at the temperature of 34°C. The studies have also analyzed the effect of water warming on the larvae growth in terms of size and symmetry. The results put in evidence the presence of a critical upper temperature (about 32°C) at which the larvae of all species reveal a great suffering state that translates in the reduction of size (i.e., of body, stomach and postero-dorsal arm) and abnormalities (i.e., strong difference in the lengths of the two postero-dorsal arms). As sea surface temperatures are predicted to increase of 4-5°C by 2100, the high percentage of abnormal larvae and their scarce survival observed at 32- 34°C treatments indicate that the early stages of these species could be affected by future global warming.
Resumo:
Climate change is occurring at a faster rate than in the past, with an expected increase of mean sea surface temperatures up to 4.8°C by the end of this century. The actual capabilities of marine invertebrates to adapt to these rapid changes has still to be understood. Adult echinoids play a crucial role in the tropical ecosystems where they live. Despite their role, few studies about the effect of temperature increase on their viability have been reported in literature. This thesis work reports a first systematic study on several Caribbean echinoids about their tolerance to temperature rise in the context of global warming. The research - carried out at the Bocas del Toro Station of the Smithsonian Tropical Research Institute, in Panama - focalized on the 6 sea urchins Lytechinus variegatus, L. williamsi, Echinometra lucunter, E. viridis, Tripneustes ventricosus and Eucidaris tribuloides, and the 2 sand dollars Clypeaster rosaceus and C. subdepressus. Mortality and neuromuscular well-being indicators - such as righting response, covering behaviour, adhesion to the substrate, spine and tube feet movements - have been analysed in the temperature range 28-38°C. The righting time RT (i.e., the time necessary for the animal to right itself completely after inversion) measured in the 6 sea urchin species, demonstrated a clearly dependence on the water temperature. The experiments allowed to determine the “thermal safety margin” (TSM) of each species. Echinometra lucunter and E. viridis resulted the most tolerant species to high temperatures with a TSM of 5.5°C, while T. ventricosus was the most vulnerable with a TSM of only 3°C. The study assessed that all the species already live at temperatures close to their upper thermal limit. Their TSMs are comparable to the predicted temperature increase by 2100. In absence of acclimatization to such temperature change, these species could experience severe die-offs, with important consequences for tropical marine ecosystems.
Resumo:
The impact of the chemical changes in the ocean waters due to the increasing atmospheric CO2 depends on the ability of an organism to control extracellular pH. Among sea urchins, this seems specific to the Euechinoidea, sea urchins except Cidaroidea. However, Cidaroidea survived two ocean acidification periods: the Permian-Trias and the Cretaceous-Tertiary crises. We investigated the response of these two sea urchin groups to reduced seawater pH with the tropical cidaroid Eucidaris tribuloides, the sympatric euechinoid Tripneustes ventricosus and the temperate euechinoid Paracentrotus lividus. Both euechinoid showed a compensation of the coelomic fluid pH due to increased buffer capacity. This was linked to an increased concentration of DIC in the coelomic fluid and thus of bicarbonate ions (most probably originating from the surrounding seawater as isotopic signature of the carbon -delta 13C- was similar). On the other hand, the cidaroid showed no changes within the coelomic fluid. Moreover, the delta 13C of the coelomic fluid did not match that of the seawater and was not significantly different between the urchins from the different treatments. Feeding rate was not affected in any species. While euechinoids are able to regulate their extracellular acid-base balance, many questions are still unanswered on the costs of this capacity. On the contrary, cidaroids do not seem affected by a reduced seawater pH. Further investigations need to be undertaken to cover more species and physiological and metabolic parameters in order to determine if energy trade-offs occur and how this mechanism of compensation is distributed among sea urchins.
Resumo:
Apoptosis is an active process of cell death, which is an integral part of growth and development in multicellular organisms. The defender against cell death 1 (DAD1), the regulatory protein to inhibit the apoptosis process, was first cloned from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA end (RACE). The full-length cDNA of the A. irradians DAD1 was 607 bp, consist of a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 205 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 339 bp. The deduced amino acid sequence of the A. irradians DAD1 showed 75.5% identity to Araneus ventricosus, 74.5% to Drosophila melanogaster, and 73.6% to Homo sapiens, Sus scrofa, Mesocricetus auratus, Rattus norvegicus and Mus musculus. Excluding the Saccharomyces cerevisiae DAD1 homologue, all animal DAD1 including A. irradians DAD1 homologue formed a subgroup and all plant DAD1 proteins formed another subgroup in the phylogenetic analysis. The A. irradians DAD1 was expressed in all examined tissues including adductor muscle, mantle, gills, digestive gland, gonad and hemolymph, suggesting that A. irradians DAD1 is expressed in most body tissues. Furthermore, the mRNA expression levels of A. irradians DAD1 gene of hemolymph were particularly high after injury, suggesting that the gene is responsive to injury stimuli.