3 resultados para Trichopoda-pennipes
Resumo:
Male Nezara viridula produce sex pheromones from many independent single cells, each with a duct that opens onto the ventral abdominal surface. Despite the presence of along duct and an associated end complex (in the form of a cupule and microvillus saccule), the structural organization of the cells that comprise the gland conform to Class 1 epidermal gland cell classification : a single cell surrounds the entire secretory complex. Each cuticular cupule contains a central bed of filaments and opens into a narrow tubular ductule that leads from the base of the cupule through the epidermis to the cuticle to open externally as a pore. The cuticle of the cupule is continuous with that of the ductule and has the appearance of three layers, although the inner (middle) layer may be a gap formed during construction of the complex. In young adult males, just molted, the ultrastructure of the cells and their inclusions indicate that they are not active. The region of the cell that is distal to the abdominal cuticle is reduced and the proximal region, surrounding the duct, is enlarged when compared with sexually mature (3-4 weeks old) adult males. At maturity the pheromone cells are enlarged distally around the cupule, but are reduced to a narrow sleeve proximally, around the ductule. Two characteristic cell profiles are evident, based on the shape of the cupule and the organelle content. Type A shows a broad opening to the cupule, an abundance of mitochondria, and few vesicular bodies. Type B has an elongated, narrow, vase-like opening to the cupule, few mitochondria, and numerous vesicular bodies. Type B cells are smaller and more abundant than Type A. Distribution within the epidermal layer also differs. It is likely that the different types represent cells producing different secretion profiles. However, the secretions retained by the standard fixation protocol within mature cells of both types look similar and appear to collect as crystalline bodies within the lumen. This may represent a common storage mechanism.
Improved understanding of the damage, ecology, and management of mirids and stinkbugs in Bollgard II
Resumo:
In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)