2 resultados para Trichogyne


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generic and subgeneric classification of the family Batrachospermaceae (Rhodophyta) has long been recognized as ambiguous and often inconsistent. One of the prime features used to delineate sections of Batrachospermum, trichogyne shape, is variable even within given species. However, characters associated with the carposporophyte and the carpogonial branch, as well as carpogonial symmetry, are practical and consistent taxonomic criteria. These features have been used to redefine sectional delineation in Batrachospermum. Based on phylogenetic reasoning and practicality, it is proposed that the three genera Nothocladus, Sirodotia and Tuomeya be reduced to sectional level within Batrachospermum. The genus Batrachospermum would thus become the sole member of the Batrachospermaceae and would include two subgenera, Batrachospermum and Acarposporophytum, the former with nine clearly defined sections (Aristata, Batrachospermum, Contorta, Hybrida, Nothocladus (Skuja) stat. nov., Sirodotia (Kylin) stat. nov., Tuomeya (Harvey) stat. nov., Turficola and Viridia). As a result, the following nomenclatural changes are proposed: Batrachospermum lindaueri (Skuja) comb. nov., B. nodosum (Skuja) comb. nov., B. delicatulum (Skuja) comb. nov., B. fennicum (Skuja) comb. nov., B. suecicum (Kylin) comb. nov. and B. americanum (Kutzing) comb. nov.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphology and phenology of Sirodotia huillensis was evaluated seasonally in a central Mexican first-order calcareous stream. Water temperature was constant (24-25°C) and pH circumneutral to alkaline (6.7-7.9), and calcium and sulfates were the dominant ions. The gametophyte stages were characterized by the presence of a distinctive mucilaginous layer, a marked difference in phycocyanin to phycoerythrin ratio between female and male plants, and the presence of a carpogonia with a large trichogyne (>60 μm). Occasionally three capogonia were observed on a single basal cell. The 'Chantransia' stages were morphologically similar to those described for the other members of Batrachospermales. A remarkable observation was the formation of dome-shaped structures, consisting of prostrate filaments that are related with the development of new gametophytes. Chromosome numbers were n = 4 for fascicle cells, cortical filament cells and dome-shaped cells, and 2n = 8 for gonimoblast filament cells and 'Chantransia' stage filaments. Gametophytes and 'Chantransia' stages occurred in fast current velocities (60-170 cm/s) and shaded (33.1-121 μmol photons/m2/s) stream segments. The population fluctuated throughout the study period in terms of percentage cover and frequency: the 'Chantransia' stages were most abundant in the rainy season, whereas gametophytic plants had the highest frequency values during the dry season. These results were most likely a result of fluctuations in rainfall and related changes in current velocity. Some characteristics of this population can be viewed as probable adaptations to high current velocities: the mucilaginous layer around plants that reduces drag; potential increase in fertilization by the elongate and plentiful trichogynes and abundant dome-shaped structures producing several gametophytes.