982 resultados para Triazene oxides complexes of lanthanides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of 2,6-diformylpyridine-bis(benzoylhydrazone) [dfpbbh] and 2,6-diformylpyridine-bis(4-phenylsemicarbazone) [dfpbpsc] with lanthanides salts yielded the new chelates complexes [Eu(dfpbpsc-H +) 2]NO 3 (1), [Dy(fbhmp) 2][Dy(dfpbbh-2H +) 2]·2EtOH·2H 2O (fbhmp = 2-formylbenzoylhydrazone-6-methoxide-pyridine; Ph = phenyl; Py = pyridine; Et = ethyl) and [Er 2(dfpbbh-2H +) 2(μ-NO 3)(H 2O) 2(OH)]·H 2O. X-ray diffraction analysis was employed for the structural characterization of the three chelate complexes. In the case of complex 1, optical, synthetic and computational methods were also exploited for ground state structure determinations and triplet energy level of the ligand and HOMO-LUMO calculations, as well as for a detailed study of its luminescence properties. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adducts of lanthanide perchlorates with 4-nitro and 4-chloro pyridine-Noxides (4-NPNO and 4-CPNO respectively) have been synthesised for the first time and characterised by analysis, electrolytic conductance, infrared, proton-NMR and electronic spectral data. The complexes are of the compositions Ln2(NPNO)15 (ClO4)6 (Ln = La, Pr, Nd and Gd), Tb(NPNO), (C1O4)6), Ln2(NPNO)13 (C1O4)6) (Ln = Dy, Ho, and Yb); Ln (CPNO)8 (C104)3) (Ln = La, Pr, Nd, Tb, Dy, Ho and Yb) and Ln(CPNO), (C1O4)3) (Ln = Sm and Gd). Conductivity and IR data provide evidence for the non-coordinated nature of the perchlorate groups. IR and NMR spectra suggest coordinationvia the oxygen of the N-oxide group. Electronic spectral shapes of the Nd+3 and Ho+3 complexes are interpreted in terms of eight-and seven-coordinate environments in the case of 4-NPNO complexes and eight-coordination in the case of 4-CPNO complexes. IR data indicate bridged structure in NPNO complexes of lanthanides other than Tb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of the literature on lanthanide coordination compounds reveals that ligands involving ether oxygens as donor atoms have received very little attention [ 11. Only recently have the complexes of lanthanides with cyclic polyethers been characterized [l-3]. We report in this communication that interaction of rareearth perchlorates with two new ligands namely N,N,N’,N’-tetramethyl-u-carboxamido-Oanisamide (TMCA) and N,N’-di-t-butyl-crcarboxamido- 0-anisamide (DTBCA). The two ligands are potentially tridentate possessing two amide moieties and an ether linkage in between. The isolated complexes have been characterized by analysis, electrolytic conductance, infrared and electronic spectra. The ‘H and “C NMR spectra for the diamagnetic La3+ and Y3+ complexes are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solvent-shared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of bimetallic acetylacetonate (acac) complexes, AlxCr1-x(acac)(3), 0 <= x <= 1, have been synthesized for application as precursors for the CVD Of Substituted oxides, such as (AlxCr1-x)(2)O-3. Detailed thermal analysis has been carried out on these complexes, which are solids that begin subliming at low temperatures, followed by melting, and evaporation from the melt. By applying the Langmuir equation to differential thermogravimetry data, the vapour pressure of these complexes is estimated. From these vapour pressure data, the distinctly different enthalpies of sublimation and evaporation are calculated, using the Clausius-Clapeyron equation. Such a determination of both the enthalpies of sublimation and evaporation of complexes, which sublime and melt congruently, does not appear to have been reported in the literature to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl-amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra. The complexes of 4-cyano pyridine-1-oxides have the composition Ln(CyPO)6(ClO4)3. 2H2O (Ln=La, Sm, Dy and Ho); Ln(CyPO)7 (ClO4)3. 2H2O (Ln=Pr, Nd, Er and Yb); and Ln(CyPO)5 (ClO4)3. 2H2O (Ln=Gd and Tb). The complexes of 4-chloro 2-picoline-1-oxide analyse for the formulae Ln(CpicO)6 (ClO4)3 (Ln=La, Pr, Nd and Ho); and Ln (CpicO)5 (ClO4)3 (Ln=Er and Yb), and those of 4-dimethylamino 2-picoline-1-oxide for Ln(DMPicO)6 (ClO4)3 (Ln=La and Nd); Ln(DMPicO)7 (ClO4)3 (Ln=Gd, Er and Yb); and Ln(DMPicO)8 (ClO4)3 (Ln=Dy and Ho).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipyrlne is a well known llgand for lanthanldes (i). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrlne is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

THE COMPLEXES of pyridine-l-oxide and 2- and 4-substituted pyridine-l-oxides have been investigated previously[l]. The complexes of 3-substituted pyfidine-l-oxides, however, have received little attention. The rare-earth complexes of pyridine-Ioxide[l, 2], 4-methylpyridine- l-oxide [1] and 2,6- dimethylpyfidine-l-oxide[3,4] have been reported earlier. The present paper deals with the isolation and characterisation of 3-methylpyridine-l-oxide (3-Picoline-N-oxide, 3-PicNO) complexes with rare-earth perchlorates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates of the general formula M(DMSO)n(NO3)3 where M = La, Ce, Pr, Nd, Sm or Gd; n = 4 and M = Y, Ho or Yb; n = 3 have been isolated and characterized. The i.r. data besides excluding the presence of D3h nitrate, reveal co-ordination through the oxygen atom of the dimethyl sulphoxide. The complexes are monomeric in acetonitrile. Molecular conductance data in acetone, acetonitrile, dimethyl formamide and dimethyl sulphoxide suggest a co-ordination number of eight for the lighter lanthanides and seven for yttrium and the heavier lanthanides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substituted phosphoramidate has been used as a ligand to lanthanides for the first time. New complexes of lanthanide nitrates with O,O′,N-triisopropyl phosphoramidate (TIP) of the general formula Ln(TIP)3(NO3)3 where Ln=La-Yb and Y have been synthesised and characterised by chemical analysis, infrared and visible electronic spectra and electrical conductance.Infrared spectra indicate the coordination of the ligand to the metal ions through the oxygen of the P=O group. IR and conductance show that the nitrate groups are all coordinated. Electronic spectral shapes have been interpreted in terms of an eight coordinate geometry around the metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraction behavior of lanthanides and yttrium usinsg CYANEX 925 (mixture of branched chain alkylated phosphine oxides) in n-heptane from nitrate medium has been studied. The effects of aqueous phase ionic strength, CYANEX 925 concentration in the organic phase, and temperature on Sm3+, Nd3+ and Y3+ extraction have been investigated. The extractability of the lanthanides and yttrium increases with increasing nitrate concentration, as well as with increasing CYANEX 925 concentration. An extraction mechanism is proposed based on slope analysis. Furthermore, the infra-red spectra of CYANEX 925 saturated with lanthanides are employed to provide evidence of the composition of the complex. The relationship between the logarithm of the distribution ratio and lanthanide atomic number is also discussed which indicates that yttrium can be separated from fight lanthanides. In addition separation of the light and heavy lanthanide groups is also possible using CYANEX 925. From the temperature dependence data, the thermodynamic parameters values (Delta H, Delta S and Delta G) are calculated.