969 resultados para Trends and Growth Rates of Pineapple Cultivation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

School of management studies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006, doi:10.1029/2005GC001189), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T °C = 16.28 (±0.10) - 4.57 (±0.15) {d18Oc VPBD - d18Ow VSMOW} + 0.06 (±0.06) {d18Oc VPBD - d18Ow VSMOW}**2; r**2 = 0.99; N = 323; p < 0.0001]. Compared to the Kim and O'Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (d18Ocalcite) with ambient water. Carbon isotopes (d13Ccalcite) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and d13Ccalcite disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in d18Ocalcite based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect d18Ocalcite in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gracilaria tenuistipitata, a species of commercial interest, is becoming a model organism for studies on red algal physiology and molecular biology as it can be grown easily in vitro under a broad range of conditions. Most of the experiments carried out around the world have been based on a tetrasporophytic clone isolated in our laboratory from a specimen collected in China. Here we describe the life history of this species, give anatomic details of the reproductive structures, illustrate the morphological variability of tetraspore progeny and compare the growth rate of gametophytic and sporophytic thalli. Tetrasporophytic branches showed higher growth rates than gametophytic branches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 mu m day-1, increasing after addition of symbionts to 18.0 mu m day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 μm day-1, increasing after addition of symbionts to 18.0 μm day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eastern Mediterranean is a hotspot of biological invasions. Numerous species of Indo-pacific origin have colonized the Mediterranean in recent times, including tropical symbiont-bearing foraminifera. Among these is the species Pararotalia calcariformata. Unlike other invasive foraminifera, this species has been discovered only two decades ago and is restricted to the eastern Mediterranean coast. Combining ecological, genetic and physiological observations, we attempt to explain the recent invasion of this species in the Mediterranean Sea. Using morphological and genetic data, we confirm the species attribution to P. calcariformata McCulloch 1977 and identify its symbionts as a consortium of diatom species dominated by Minutocellus polymorphus. We document photosynthetic activity of its endosymbionts using Pulse Amplitude Modulated Fluorometry and test the effects of elevated temperatures on growth rates of asexual offspring. The culturing of asexual offspring for 120 days shows a 30-day period of rapid growth followed by a period of slower growth. A subsequent 48-day temperature sensitivity experiment indicates a similar developmental pathway and high growth rate at 28°C, whereas an almost complete inhibition of growth was observed at 20°C and 35°C. This indicates that the offspring of this species may have lower tolerance to cold temperatures than what would be expected for species native to the Mediterranean. We expand this hypothesis by applying a Species Distribution Model (SDM) based on modern occurrences in the Mediterranean using three environmental variables: irradiance, turbidity and yearly minimum temperature. The model reproduces the observed restricted distribution and indicates that the range of the species will drastically expand westwards under future global change scenarios. We conclude that P. calcariformata established a population in the Levant because of the recent warming in the region. In line with observations from other groups of organisms, our results indicate that continued warming of the eastern Mediterranean will facilitate the invasion of more tropical marine taxa into the Mediterranean, disturbing local biodiversity and ecosystem structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro propagation of pineapple produces uniform and disease-free plantlets, but requires a long period of acclimatization before transplanting to the field. Quicker adaptation to the ex vitro environment and growth acceleration of pineapple plantlets are prerequisites for the production of a greater amount of vigorous, well-rooted planting material. The combination of humic acids and endophytic bacteria could be a useful technological approach to reduce the critical period of acclimatization. The aim of this study was to evaluate the initial performance of tissue-cultured pineapple variety Vitória in response to application of humic acids isolated from vermicompost and plant growth-promoting bacteria (Burkholderia spp.) during greenhouse acclimatization. The basal leaf axils were treated with humic acids while roots were immersed in bacterial medium. Humic acids and bacteria application improved shoot growth (14 and 102 %, respectively), compared with the control; the effect of the combined treatment was most pronounced (147 %). Likewise, humic acids increased root growth by 50 %, bacteria by 81 % and the combined treatment by 105 %. Inoculation was found to significantly increase the accumulation of N (115 %), P (112 %) and K (69 %) in pineapple leaves. Pineapple growth was influenced by inoculation with Burkholderia spp., and further improved in combination with humic acids, resulting in higher shoot and root biomass as well as nutrient contents (N 132 %, P 131 %, K 80 %) than in uninoculated plantlets. The stability and increased consistency of the host plant response to bacterization in the presence of humic substances indicate a promising biotechnological tool to improve growth and adaptation of pineapple plantlets to the ex vitro environment.