976 resultados para Tree growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba 3 grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spotted gum dominant forests occur from Cooktown in northern Queensland (Qld) to Orbost in Victoria (Boland et al. 2006) and these forests are commercially very important with spotted gum the most commonly harvested hardwood timber in Qld and one of the most important in New South Wales (NSW). Spotted gum has a wide range of end uses from solid wood products through to power transmission poles and generally has excellent sawing and timber qualities (Hopewell 2004). The private native forest resource in southern Qld and northern NSW is a critical component of the hardwood timber industry (Anon 2005, Timber Qld 2006) and currently half or more of the native forest timber resource harvested in northern NSW and Qld is sourced from private land. However, in many cases productivity on private lands is well below what could be achieved with appropriate silvicultural management. This project provides silvicultural management tools to assist extension staff, land owners and managers in the south east Qld and north eastern NSW regions. The intent was that this would lead to improvement of the productivity of the private estate through implementation of appropriate management. The other intention of this project was to implement a number of silvicultural experiments and demonstration sites to provide data on growth rates of managed and unmanaged forests so that landholders can make informed decisions on the future management of their forests. To assist forest managers and improve the ability to predict forest productivity in the private resource, the project has developed: • A set of spotted gum specific silvicultural guidelines for timber production on private land that cover both silvicultural treatment and harvesting. The guidelines were developed for extension officers and property owners. • A simple decision support tool, referred to as the spotted gum productivity assessment tool (SPAT), that allows an estimation of: 1. Tree growth productivity on specific sites. Estimation is based on the analysis of site and growth data collected from a large number of yield and experimental plots on Crown land across a wide range of spotted gum forest types. Growth algorithms were developed using tree growth and site data and the algorithms were used to formulate basic economic predictors. 2. Pasture development under a range of tree stockings and the expected livestock carrying capacity at nominated tree stockings for a particular area. 3. Above-ground tree biomass and carbon stored in trees. •A series of experiments in spotted gum forests on private lands across the study area to quantify growth and to provide measures of the effect of silvicultural thinning and different agro-forestry regimes. The adoption and use of these tools by farm forestry extension officers and private land holders in both field operations and in training exercises will, over time, improve the commercial management of spotted gum forests for both timber and grazing. Future measurement of the experimental sites at ages five, 10 and 15 years will provide longer term data on the effects of various stocking rates and thinning regimes and facilitate modification and improvement of these silvicultural prescriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accuracy in tree woody growth estimates is important to global carbon budget estimation and climate-change science. Tree growth in permanent sampling plots (PSPs) is commonly estimated by measuring stem diameter changes, but this method is susceptible to bias resulting from water-induced reversible stem shrinkage. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. We propose and test a novel approach for estimating and correcting this bias at the community level. In a 50-ha PSP from a seasonally dry tropical forest in southern India, where tape measurements have been taken every four years from 1988 to 2012, for nine trees we estimated bias due to reversible stem shrinkage as the difference between woody growth measured using tree rings and that estimated from tape. We tested if the bias estimated from these trees could be used as a proxy to correct bias in tape-based growth estimates at the PSP scale. We observed significant shrinkage-related bias in the growth estimates of the nine trees in some censuses. This bias was strongly linearly related to tape-based growth estimates at the level of the PSP, and could be used as a proxy. After bias was corrected, the temporal variance in growth rates of the PSP decreased, while the effect of exceptionally dry or wet periods was retained, indicating that at least a part of the temporal variability arose from reversible shrinkage-related bias. We also suggest that the efficacy of the bias correction could be improved by measuring the proxy on trees that belong to different size classes and census timing, but not necessarily to different species. Our approach allows for reanalysis - and possible reinterpretation of temporal trends in tree growth, above ground biomass change, or carbon fluxes in forests, and their relationships with resource availability in the context of climate change. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Tree-ring records from foxtail pine (Pinus balfouriana) and western juniper (Juniperus occidentalis) growing near tree line in the eastern Sierra Nevada, California, show strong correlations with summer temperature and winter precipitation. Response surfaces portraying tree growth as a function of summer temperature and winter precipitation indicate a strong interaction between these variables in controlling growth. ... Above average growth for both foxtail pine and western juniper from AD 1480 to 1570 can be interpreted as indicating an extended period of warm, moist conditions unequalled during the 20th century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-spectral analysis of regional tree-ring data suggests the spatial pattern of correlation between moisture variations in the Sierra Nevada of central California and in other parts of the western United States is frequency dependent. Short wavelengths (2.8 to 10.7 years), perhaps associated with El Niño/Southern Oscillation, are strongly coherent both to the north (Oregon) and to the south (Southern California). Longer wavelengths (45 to 75 years) are strongly coherent only to the north. Frequency bands corresponding to annual sunspot series were associated with relatively weak patterns of spatial correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): In this work, I examine patterns of atmospheric circulation associated with tree growth anomalies at mid-to-high latitudes (2000-3500 meters).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information on the genetic variation of plant response to elevated CO2 (e[CO2]) is needed to understand plant adaptation and to pinpoint likely evolutionary response to future high atmospheric CO2 concentrations.• Here, quantitative trait loci (QTL) for above- and below-ground tree growth were determined in a pedigree – an F2 hybrid of poplar (Populus trichocarpa and Populus deltoides), following season-long exposure to either current day ambient CO2 (a[CO2]) or e[CO2] at 600 µl l−1, and genotype by environment interactions investigated.• In the F2 generation, both above- and below-ground growth showed a significant increase in e[CO2]. Three areas of the genome on linkage groups I, IX and XII were identified as important in determining above-ground growth response to e[CO2], while an additional three areas of the genome on linkage groups IV, XVI and XIX appeared important in determining root growth response to e[CO2].• These results quantify and identify genetic variation in response to e[CO2] and provide an insight into genomic response to the changing environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combined measurements of tree growth and carbon dioxide exchange to investigate the effects of selective logging on the Aboveground Live Biomass (AGLB) of a tropical rain forest in the Amazon. Most of the measurements began at least 10 months before logging and continued at least 36 months after logging. The logging removed similar to 15% of the trees with Diameter at Breast Height (DBH) greater than 35 cm, which resulted in an instantaneous 10% reduction in AGLB. Both wood production and mortality increased following logging, while Gross Primary Production (GPP) was unchanged. The ratio of wood production to GPP (the wood Carbon Use Efficiency or wood CUE) more than doubled following logging. Small trees (10 cm < DBH < 35 cm) accounted for most of the enhanced wood production. Medium trees (35 cm < DBH < 55 cm) that were within 30 m of canopy gaps created by the logging also showed increased growth. The patterns of enhanced growth are most consistent with logging-induced increases in light availability. The AGLB continued to decline over the study, as mortality outpaced wood production. Wood CUE and mortality remained elevated throughout the 3 years of postlogging measurements. The future trajectory of AGLB and the forest`s carbon balance are uncertain, and will depend on how long it takes for heterotrophic respiration, mortality, and CUE to return to prelogging levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current nutrient deposition shows episodic variations which likely may impact the local nutrient cycle at the RBSF. Comparing analyses of deposition data during present-day atmospheric circulation and phases of high biomass burning in the Amazon, characteristic relationships between remote emissions and local deposition are determined. By using projections drawn from the special report on emission scenarios (SRES) in combination with a trajectory modeling tool, future nutrient deposition conditions of the mountain ecosystem are assessed. Observations of relations between climatic variables, current time series of nutrient deposition, and tree growth point to an impact of the remote fertilization effect of atmospheric matters, emitted primarily by human activities like biomass burning and agricultural and industrial sources. The increasing emissions in the future may have adverse effects on the ecosystem in the long run.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

•Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. •We followed symbiotic carbon (C)–N exchange in a large-scale boreal pine forest experiment by tracing 13CO2 absorbed through tree photosynthesis and 15N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. •We detected little 15N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of 15N from soil microbes and root tips to tree foliage. •These results were tested in a model for C–N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a forest grove at Korup dominated by the ectomycorrhizal species Microberlinia bisulcata, an experiment tested whether phosphorus (P) was a limiting nutrient. P-fertilization of seven subplots 1995-97 was compared with seven controls. It led to large increases in soil P concentrations. Trees were measured in 1995 and 2000. M. bisulcata and four other species were transplanted into the treatments, and a wild cohort of M. bisulcata seedlings was followed in both. Leaf litter fall from trees and seedlings were analysed for nutrients. Growth of trees was not affected by added P. Transplanted seedlings survived better in the controls than added-P subplots: they did not grow better with added-P.M. bisulcata wildlings survived slightly better in the added-P subplots in yr 1 but not later. Litter fall and transplanted survivors had much higher concentrations of P (not N) in the added-P than control subplots. Under current conditions, it appears that P does not limit growth of trees or hinder seedling establishment, especially of M. bisculcata, in these low-P grove soils.