957 resultados para Treatment. Peri-implant mucositis. Dental implants. Chlorhexidine
Resumo:
It has been shown that the development of peri-implant mucositis is associated with biofilm accumulation. It is believed that the therapeutic approaches used in periodontal disease may have a positive effect in the cases of peri-implant disease. The aim of this study was to evaluate the effectiveness of non-surgical treatment of peri-implant mucositis, with or without the use of chlorhexidine 0,12% in subjects rehabilitated with osseointegrated implants. Thus, patients were randomly divided into test group (chlorhexidine surgical therapy) and control (non-surgical treatment). This therapy consisted of an adaptation of the (Full Mouth scalling and Root Planing) nonoperative protocol FMSRP, but without the use of ultrasound. The visible plaque index (VPI), gingival bleeding index (GBI), probing depth (PD), bleeding on probing (BOP) and keratinized mucosa clinical parameters were evaluated at baseline and at different times after treatment. The data were not normally distributed and the implant was considered the sampling unit. Data were analyzed using Fri edman and Wilcoxon chi-square (=5%), tests using the Statistical Package for Social Sciences 17.0 (SPSS). Thus, 119 implants were evaluated, 61 in the test group and 58 in the control group. The results showed statistically significant differences for the variables: average BTI implants in both groups (p<0,001), mean ISG implants both in the test group (p<0,001), and control (p= 0,006) of implants; PS for the test group (p< 0,001) and control (p = 0,015) and SS (p<0,001) in the two treatment groups. However, there was no statistically significant difference when the groups were compared. The PS and SS variables showed no statistically significant difference in any of independent interest to the study (age, sex, smoking, treatment group, keratinized mucosa at different times, peri-implant biotype, average VPI implants and GBI). Thus, it can be concluded that both the mechanical treatment isolated as its association with chlorhexidine mouthwash 0.12% can be used for the treatment of peri-implant mucositis. Moreover, the condition of oral h ygiene has improved between baseline and six months and the depth and bleeding on probing decreased after three and six months
Resumo:
To compare the effectiveness of two anti-infective protocols for the treatment of peri-implant mucositis.
Resumo:
OBJECTIVES: This experiment was performed to evaluate clinically and histologically the effect of mechanical therapy with or without antiseptic therapy on peri-implant mucositis lesions in nine cynomolgus monkeys. MATERIAL AND METHODS: Two ITI titanium implants were inserted into each side of the mandibles. After 90 days of plaque control and soft tissue healing, a baseline clinical examination was completed. Peri-implant lesions were induced by placing silk ligatures and allowing plaque to accumulate for 6 weeks. The clinical examination was then repeated, and the monkeys were randomly assigned to three treatment groups: group A, mechanical cleansing only; group B, mechanical cleansing and local irrigation with 0.12% chlorhexidine (CHX) and application of 0.2% CHX gel; and group C, control, no treatment. The implants in treatment groups A and B were treated and maintained according to the assigned treatment for two additional months. At the end of the maintenance period, a final clinical examination was performed and the animals were sacrificed for biopsies. RESULTS: The mean probing depths (PD) values at mucositis were: 3.5, 3.7, and 3.4 mm, and clinical attachment level (CAL) = 3.8, 4.1, and 3.9 mm for treatment groups A, B and C, respectively. The corresponding values after treatment were: PD = 1.7, 2.1, and 2.5 mm, and CAL=2.6, 2.6, and 3.1 mm. ANOVA of mean changes (Delta) in PD and CAL after treatment showed no statistical difference between the treatment groups. Comparison of the mean changes in PD and CAL after treatment yielded statistical differences between the control and treatment groups P < 0.01. According to the t-test, no statistical difference was found between treatment groups A and B for the PD reduction but there was a significant difference for the CAL change, P < 0.03. Group A had significantly more recession and less CAL gain than group B. Non-parametric tests yielded no significant differences in modified plaque index (mPlI) and gingival index (GI) after treatment between both treatment groups. Frequencies and percent distributions of the mPlI and GI scores changed considerably for both treatment groups when compared with the changes in the control group after treatment. With regard to the histological evaluation, no statistical differences existed between the treatments for any linear measurement. The proportion of inflammation found in the mucosal tissues of the control implants was greater than the one found for both treatment groups, P < 0.01. More importantly, both treatment groups showed a similar low proportion of inflammation after 2 months of treatment. CONCLUSIONS: Within the limitations of this experiment, and considering the supportive plaque control rendered, it can be concluded that for pockets of 3-4 mm: (1) mechanical therapy alone or combined with CHX results in the clinical resolution of peri-implant mucositis lesions, (2) histologically, both treatments result in minimal inflammation compatible with health, and (3) the mechanical effect alone is sufficient to achieve clinical and histologic resolution of mucositis lesions.
Resumo:
AIMS Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. METHODS Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. RESULTS Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention comprising oral hygiene instructions and mechanical debridement revealed a reduction in clinical signs of inflammation; (vii) adjunctive measures (antiseptics, local and systemic antibiotics, air-abrasive devices) were not found to improve the efficacy of professionally administered plaque removal in reducing clinical signs of inflammation. CONCLUSIONS Consensus was reached on recommendations for patients with dental implants and oral health care professionals with regard to the efficacy of measures to manage peri-implant mucositis. It was particularly emphasized that implant placement and prosthetic reconstructions need to allow proper personal cleaning, diagnosis by probing and professional plaque removal.
Resumo:
The treatment of infectious diseases affecting osseointegrated implants in function has become a demanding issue in implant dentistry. Since the early 1990s, preclinical data from animal studies have provided important insights into the etiology, pathogenesis and therapy of peri-implant diseases. Established lesions in animals have shown many features in common with those found in human biopsy material. The current review focuses on animal studies, employing different models to induce peri-implant mucositis and peri-implantitis.
Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans
Resumo:
To monitor clinical, microbiological and host-derived alterations occurring around teeth and titanium implants during the development of experimental gingivitis/mucositis and their respective healing sequence in humans.
Resumo:
This RCT compared non-surgical treatment of peri-implant mucositis with or without systemic antibiotics.
Resumo:
OBJECTIVES To histologically and immunologically assess experimental peri-implant mucositis at surface enhanced modified (mod) hydrophilic titanium implants. MATERIALS AND METHODS In a split-mouth design (n = 6 foxhounds), four different implants were inserted on each side of the maxilla: three titanium-zirconium alloy implants (TiZr) with either modSLA (sand-blasted, acid etched and chemically mod), modMA (machined, acid etched and chemically mod), or M (machined) surfaces in the transmucosal portion, and one titanium implant with a machined transmucosal portion (TiM). Experimental mucositis was induced at one randomly assigned side (NPC), whereas the contra-lateral maxillary side received mechanical plaque removal three times per week (PC). At 16 weeks, tissue biopsies were processed for histological (primary outcome: apical extension of the inflammatory cell infiltrate measured from the mucosal margin - PM-aICT) and immunohistochemical (CD68 antigen reactivity) analyses. Peri-implant sulcus fluid was analysed for interleukin (IL)-1β, IL-8, matrix metalloproteinase (MMP)-8 and myeloperoxidase (MPO). RESULTS Mean PM-aICT values varied between 1.86 (TiZrmodSLA) and 3.40 mm (TiM) in the UPC group, and between 0.88 (TiZrmodSLA) and 2.08 mm (TiZrM) in the PC group. Mean CD68, IL-1β, IL-8, MMP-8 and MPO values were equally distributed between mod- and control implants in both NPC and PC groups. CONCLUSIONS The progression of experimental mucositis was comparable at all implant surfaces investigated.
Resumo:
AIM To systematically assess the efficacy of patient-administered mechanical and/or chemical plaque control protocols in the management of peri-implant mucositis (PM). MATERIAL AND METHODS Randomized (RCTs) and Controlled Clinical Trials (CCTs) were identified through an electronic search of three databases complemented by manual search. Identification, screening, eligibility and inclusion of studies was performed independently by two reviewers. Studies without professional intervention or with only mechanical debridement professionally administered were included. Quality assessment was performed by means of the Cochrane Collaboration's tool for assessing risk of bias. RESULTS Eleven RCTs with a follow-up from 3 to 24 months were included. Definition of PM was lacking or heterogeneously reported. Complete resolution of PM was not achieved in any study. One study reported 38% of patients with complete resolution of PM. Surrogate end-point outcomes of PM therapy were often reported. The choice of control interventions showed great variability. The efficacy of powered toothbrushes, a triclosan-containing toothpaste and adjunctive antiseptics remains to be established. High quality of methods and reporting was found in four studies. CONCLUSIONS Professionally- and patient-administered mechanical plaque control alone should be considered the standard of care in the management of PM. Therapy of PM is a prerequisite for the prevention of peri-implantitis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to review the literature on the systems used to decontaminate the implant's surface. Different instruments have been proposed, but there is no agreement in the literature about which methods would be more efficient with no damage to the implant surface. It was reported the use of plastic, carbon fiber, stainless-steel and titanium curettes and also the use of other systems such as ultrasonic points with different tips, rubber cups and air abrasion. Literature review: In most of the studies, the injury caused on the titanium surface at the time of instrumentation was examined. In others, the cell adhesion on the titanium dental implants following instrumentation of the implant surface was observed. Moreover, to enhance cleaning around implants, ultrasonic systems were recently tested. Conclusion: Metal instruments can lead to major damage to implant surface, therefore, they are not indicated for decontamination of dental implants surfaces. Furthermore, non-metallic instruments, such as plastic curettes, rubber cups, air abrasion and some ultrasonic systems seem to be better choices to remove calculus and plaque of the sub- and supra-gingival peri-implant area. It is noteworthy that more studies evaluating the effects of these systems are required to establish best practices to be used in the treatment of patients with dental implants.
Resumo:
Antimicrobial photodynamic therapy (PDT) has attracted much attention for the treatment of pathogenic biofilm associated with peridontitis and peri-implantitis. However, data from randomized controlled clinical studies (RCTs) are limited and, to some extent, controversial, making it difficult to provide appropriate recommendations. Therefore, the aims of the present study were (a) to provide an overview on the current evidence from RCTs evaluating the potential clinical benefit for the additional use of PDT to subgingival mechanical debridement (ie, scaling and root planing) alone in nonsurgical periodontal therapy; and (b) to provide clinical recommendations for the use of PDT in periodontal practice.
Resumo:
Aim: To study the influence on the healing of soft and hard peri-implant tissues when implants of different sizes and configurations were installed into sockets immediately after tooth extraction.Material and methods: Transmucosal cylindrical implants, 3.3 mm in diameter in the control sites, and conical 5 mm in diameter in the test sites, were installed into the distal socket of the fourth mandibular premolars in dogs immediately after tooth extraction. After 4 months, the hard and soft tissue healing was evaluated histologically. Results: All implants were integrated in mineralized mature bone. Both at the test and control sites, the alveolar crest underwent resorption. The buccal bony surface at the implant test sites (conical; 3.8 mm) was more resorbed compared with the control sites (cylindrical; 1.6 mm). The soft tissue dimensions were similar in both groups. However, in relation to the implant shoulder, the peri-implant mucosa was located more apically at the test compared with the control sites.Conclusion: The present study confirmed that the distance between the implant surface and the outer contour of the buccal alveolar bony crest influenced the degree of resorption of the buccal bone plate. Consequently, in relation to the implant shoulder, the peri-implant mucosa will be established at a more apical level, if the distance between the implant surface and the outer contour of the alveolar crest is small.
Resumo:
Purpose: The aim of this study was to evaluate, through histomorphometric analysis, the effect that different loading times would have on the bone response around implants. Materials and Methods: Three Replace Select implants were placed on each side of the mandible in eight dogs (n = 48 implants). One pair of implants was selected for an immediate loading protocol (IL). After 7 days, the second pair of implants received prostheses for an early loading protocol (EL). Fourteen days after implant placement, the third pair of implants received prostheses for advanced early loading (AEL). Following 12 weeks of prosthetics, counted following the positioning of the metallic crowns for the AEL group, the animals were sacrificed and the specimens were prepared for histomorphometric analysis. The differences between loading time in the following parameters were evaluated through analysis of variance: bone-to-implant contact, bone density, and crestal bone loss. Results: The mean percentage of bone-to-implant contact for IL was 77.9% +/- 1.71%, for EL it was 79.25% +/- 2.11%, and for AEL it was 79.42% +/- 1.49%. The mean percentage of bone density for IL was 69.97% +/- 3.81%, for EL it was 69.23% +/- 5.68%, and for AEL it was 69.19% +/- 2.90%. Mean crestal bone loss was 1.57 +/- 0.22 mm for IL, 1.23 +/- 0.19 mm for EL, and 1.17 +/- 0.32 mm for AEL. There was no statistical difference for any of the parameters evaluated (P > .05). Conclusion: Different early loading times did not seem to significantly affect the bone response around dental implants. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:473-481