147 resultados para Transversus abdominis
Resumo:
The temporal parameters of the response of the trunk muscles associated with movement of the lower limb were investigated in people with and without low back pain (LBP). The weight shift component of the task was completed voluntarily prior to a stimulus to move to allow investigation of the movement component of the response. In the control subjects the onset of electromyographic (EMG) activity of all trunk muscles preceded that of the muscle responsible for limb movement, thus contributing to the feed forward postural response. The EMG onset of transversus abdominis was delayed in the LBP subjects with movement in each direction, while the EMG onsets of rectus abdominis, erector spinae, and oblique abdominal muscles were delayed with specific movement directions. This result provides evidence of a change in the postural control of the trunk in people with LBP.
Resumo:
There has been considerable interest in the literature regarding the function of transversus abdominis, the deepest of the abdominal muscles, and the clinical approach to training this muscle. With the development of techniques for the investigation of this muscle involving the insertion of fine-wire electromyographic electrodes under the guidance of ultrasound imaging it has been possible to test the hypotheses related to its normal function and function in people with low back pain. The purpose of this review is to provide an appraisal of the current evidence for the role of transversus abdominis in spinal stability, to develop a model of how the contribution of this muscle differs from the other abdominal muscles and to interpret these findings in terms of the consequences of changes in this function.
Resumo:
Because the structure of the spine is inherently unstable, muscle activation is essential for the maintenance of trunk posture and intervertebral control when the limbs are moved. To investigate how the central nervous system deals with this situation the temporal components of the response of the muscles of the trunk were evaluated during rapid limb movement performed in response to a visual stimulus. Fine-wire electromyography (EMG) electrodes were inserted into transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) of 15 subjects under the guidance of real-time ultrasound imaging. Surface electrodes were placed over rectus abdominis (RA), lumbar multifidus (MF) and the three parts of deltoid. In a standing position, ten repetitions of shoulder flexion, abduction and extension were performed by the subjects as fast as possible in response to a visual stimulus. The onset of TrA EMG occurred in advance of deltoid irrespective of the movement direction. The time to onset of EMC activity of OI, OE, RA and MF varied with the movement direction, being activated earliest when the prime action of the muscle opposed the reactive forces associated with the specific limb movement. It is postulated that the non-direction-specific contraction of TrA may be related to the control of trunk. stability independent of the requirement for direction-specific control of the centre of gravity in relation to the base of support.
The relation between the transversus abdominis muscles, sacroilac joint mechanics, and low back pain
Resumo:
Study Design. Two abdominal muscle patterns were tested in the same group of individuals, and their effects were compared in relation to sacroiliac joint laxity. One pattern was contraction of the transversus abdominis, Independently of the other abdominals; the other was a bracing action that used all the lateral abdominal muscles. Objectives. To demonstrate the biomechanical effect of the exercise for the transversus abdominis known to be effective in low back pain. Summary of Background Data. Drawing in the abdominal wall is a specific exercise for the transversus abdominis muscle (in cocontraction with the multifidus), which is used in the treatment of back pain. Clinical effectiveness has been demonstrated to be a reduction of 3-year recurrence from 75% to 35%. To the authors' best knowledge, there is not yet in vivo proof of the biomechanical effect of this specific exercise. This study of a biomechanical model on the mechanics of the sacroiliac joint, however, predicted a significant effect of transversus abdominis muscle force. Methods. Thirteen healthy individuals who could perform the test patterns were included. Sacroiliac joint laxity values were recorded with study participants in the prone position during the two abdominal muscle patterns. The values were recorded by means of Doppler Imaging of vibrations. Simultaneous electromyographic recordings and ultrasound imaging were used to verify the two muscle patterns. Results. The range of sacroiliac joint laxity values observed in this study was comparable with levels found in earlier studies of healthy individuals. These values decreased significantly in all individuals during both muscle patterns (P < 0.001). The independent transversus abdominis contraction decreased sacroiliac joint laxity (or rather increased sacroiliac joint stiffness) to a significantly greater degree than the general abdominal exercise pat-tern (P < 0.0260). Conclusions. Contraction of the transversus abdominis significantly decreases the laxity of the sacroiliac joint. This decrease in laxity is larger than that caused by a bracing action using all the lateral abdominal muscles. These findings are in line with the authors' biomechanical model predictions and support the use of independent transversus abdominis contractions for the treatment of low back pain.
Resumo:
Introduction : Le bloc transverse de l'abdomen (bloc TAP, Transversus Abdominis Plane) échoguidé consiste en l'injection d'anesthésique local dans la paroi abdominale entre les muscles oblique interne et transverse de l'abdomen sous contrôle échographique. Ceci permet de bloquer l'innervation sensitive de la paroi antérolatérale de l'abdomen afin de soulager la douleur après des interventions chirurgicales. Auparavant, cette procédure reposait sur une technique dite « à l'aveugle » qui utilisait des repères anatomiques de surface. Depuis quelques années, cette technique est effectuée sous guidage échographique ; ainsi, il est possible de visualiser les structures anatomiques, l'aiguille et l'anesthésique local permettant ainsi une injection précise de l'anesthésique local à l'endroit désiré. Les précédentes méta- analyses sur le bloc TAP n'ont inclus qu'un nombre limité d'articles et n'ont pas examiné l'effet analgésique spécifique de la technique échoguidée. L'objectif de cette méta-analyse est donc de définir l'efficacité analgésique propre du bloc TAP échoguidé après des interventions abdominales chez une population adulte. Méthode : Cette méta-analyse a été effectuée selon les recommandations PRISMA. Une recherche a été effectuée dans les bases de donnée MEDLINE, Cochrane Central Register of Controlled Clinical Trials, Excerpta Medica database (EMBASE) et Cumulative Index to Nursing and Allied Health Literature (CINAHL). Le critère de jugement principal est la consommation intraveineuse de morphine cumulée à 6 h postopératoires, analysée selon le type de chirurgie (laparotomie, laparoscopie, césarienne), la technique anesthésique (anesthésie générale, anesthésie spinale avec/ou sans morphine intrathécale), le moment de l'injection (début ou fin de l'intervention), et la présence ou non d'une analgésie multimodale. Les critères de jugement secondaires sont, entre autres, les scores de douleur au repos et à l'effort à 6 h postopératoires (échelle analogique de 0 à 100), la présence ou non de nausées et vomissements postopératoires, la présence ou non de prurit, et le taux de complications de la technique. Résultats : Trente et une études randomisées contrôlées, incluant un total de 1611 adultes ont été incluses. Indépendamment du type de chirurgie, le bloc TAP échoguidé réduit la consommation de morphine à 6 h postopératoires (différence moyenne : 6 mg ; 95%IC : -7, -4 mg ; I =94% ; p<0.00001), sauf si les patients sont au bénéfice d'une anesthésie spinale avec morphine intrathécale. Le degré de réduction de consommation de morphine n'est pas influencé par le moment de l'injection (I2=0% ; p=0.72) ou la présence d'une analgésie multimodale (I2=73% ; p=0.05). Les scores de douleurs au repos et à l'effort à 6h postopératoire sont également réduits (différence moyenne au repos : -10 ; 95%IC : -15, -5 ; I =92% ; p=0.0002; différence moyenne en mouvement : -9 ; 95%IC : -14, -5 ; I2=58% ; p<0. 00001). Aucune différence n'a été retrouvée au niveau des nausées et vomissements postopératoires et du prurit. Deux complications mineures ont été identifiées (1 hématome, 1 réaction anaphylactoïde sur 1028 patients). Conclusions : Le bloc TAP échoguidé procure une analgésie postopératoire mineure et ne présente aucun bénéfice chez les patients ayant reçu de la morphine intrathécale. L'effet analgésique mineure est indépendant du moment de l'injection ou de la présence ou non d'une analgésie multimodale.
Resumo:
The role of the abdominal muscles in trunk rotation is not comprehensively understood. This study investigated the electromyographic (EMG) activity of anatomically distinct regions of the abdominal muscles during trunk rotation in six subjects with no history of spinal pain. Fine-wire electrodes were inserted into the right abdominal wall; upper region of transversus abdominis (TrA), middle region of TrA, obliquus internus abdominis (OI) and obliquus externus abdominis (OE), and lower region of TrA and OI. Surface electrodes were placed over right rectus abdominis (RA). Subjects performed trunk rotation to the left and right in sitting by rotating their pelvis relative to a fixed thorax. EMG activity was recorded in relaxed supine and sitting, and during an isometric hold at end range. TrA was consistently active during trunk rotation, with the recruitment patterns of the upper fascicles opposite to that of the middle and lower fascicles. During left rotation, there was greater activity of the lower and middle regions of contralateral TrA and the lower region of contralateral OI. The upper region of ipsilateral TrA and OE were predominately active during right rotation. In contrast, there was no difference in activity of RA and middle OI between directions (although middle OI was different between directions for all but one subject). This study indicates that TrA is active during trunk rotation, but this activity varies between muscle regions. These normative data will assist in understanding the role of TrA in lumbopelvic control and movement, and the effect of spinal pain on abdominal muscle recruitment.
Resumo:
Background. The mechanisms by which the abdominal muscles move and control the lumbosacral spine are not clearly understood. Descriptions of abdominal morphology are also conflicting and the regional anatomy of these muscles has not been comprehensively examined. The aim of this study was to investigate the morphology of regions of transversus abdominis and obliquus internus and externus abdominis. Methods. Anterior and posterolateral abdominal walls were dissected bilaterally in 26 embalmed human cadavers. The orientation, thickness and length of the upper, middle and lower fascicles of transversus abdominis and obliquus internus abdominis, and the upper and middle fascicles of obliquus externus abdominis were measured. Findings. Differences in fascicle orientation, thickness and length were documented between the abdominal muscles and between regions of each muscle. The fascicles of transversus abdominis were horizontal in the upper region, with increasing inferomedial orientation in the middle and lower regions. The upper and middle fascicles of obliquus internus abdominis were oriented superomedially and the lower fascicles inferomedially. The mean vertical dimension of transversus abdominis that attaches to the lumbar spine via the thoracolumbar fascia was 5.2 (SD 2.1) cm. Intramuscular septa were observed between regions of transversus abdominis, and obliquus internus abdominis could be separated into two distinct layers in the lower and middle regions. Interpretation. This study provides quantitative data of morphological differences between regions of the abdominal muscles, which suggest variation in function between muscle regions. Precise understanding of abdominal muscle anatomy is required for incorporation of these muscles into biomechanical models. Furthermore, regional variation in their morphology may reflect differences in function. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Study Design. An operator blinded dual modality trial of measurement of the abdominal muscles during drawing-in of the abdominal wall. Objectives. 1) To investigate, using magnetic resonance imaging (MRI), the function of the transversus abdominis muscle bilaterally during a drawing-in of the abdominal wall. 2) To validate the use of real-time ultrasound imaging as a measure of the deep abdominal muscle during a drawing-in of the abdominal wall. Summary of Background Data. Previous research has implicated the deep abdominal muscle, transversus abdominis, in the support and protection of the spine and provided evidence that training this muscle is important in the rehabilitation of low back pain. One of the most important actions of the transversus abdominis is to draw-in the abdominal wall, and this action has been shown to stiffen the sacroiliac joints. It is hypothesized that in response to a draw in, the transversus abdominis muscle forms a deep musculofascial corset and that MRI could be used to view this corset and verify its mechanism of action on the lumbopelvic region. Methods. Thirteen healthy asymptomatic male elite cricket players aged 21.3 +/- 2.1 years were imaged using MRI and ultrasound imaging as they drew in their abdominal walls. Measurements of the thickness of the transversus abdominis and internal oblique muscles and the slide of the anterior abdominal fascia were measured using both MRI and ultrasound. Measurement of the whole abdominal cross-sectional area (CSA) was conducted using MRI. Results. Results of the MRI demonstrated that, as a result of draw-in, there was a significant increase in thickness of the transversus abdominis (P < 0.001) and the internal oblique muscles (P < 0.001). There was a significant decrease in the CSA of the trunk (P < 0.001). The mean slide ( +/- SD) of the anterior abdominal fascia was 1.54 +/- 0.38 cm for the left side and 1.48 +/- 0.35 cm for the right side. Ultrasound measurements of muscle thickness of both transversus abdominis and the internal oblique, as well as fascial slide, correlated with measures obtained using MRI (interclass correlations from 0.78 to 0.95). Conclusions. The MRI results demonstrated that during a drawing-in action, the transversus abdominis contracts bilaterally to form a musculofascial band that appears to tighten (like a corset) and most likely improves the stabilization of the lumbopelvic region. Real-time ultrasound imaging can also be used to measure changes in the transversus abdominis during the draw-in maneuver.
Resumo:
1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG-activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG-coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH(2)O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.