985 resultados para Transverse momenta
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report transverse momentum (p(T) <= 15 GeV/c) spectra of pi(+/-), K-+/-, p, (p) over bar, K-0(S), and rho(0) at midrapidity in p + p and Au + Au collisions at root s(NN) = 200 GeV. Perturbative QCD calculations are consistent with pi(+/-) spectra in p + p collisions but do not reproduce K and p((p) over bar) spectra. The observed decreasing antiparticle-to-particle ratios with increasing p(T) provide experimental evidence for varying quark and gluon jet contributions to high-p(T) hadron yields. The relative hadron abundances in Au + Au at p(T) >= 8 GeV/c are measured to be similar to the p + p results, despite the expected Casimir effect for parton energy loss.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The production of the prompt charm mesons D-0, D+, D*(+), and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy root s(NN) = 2.76 TeV per nucleon-nucleon collision. The p(t)-differential production yields in the range 2 < p(t) < 16 GeV/c at central rapidity, vertical bar y vertical bar < 0.5, were used to calculate the nuclear modification factor R-AA with respect to a proton-proton reference obtained from the cross section measured at root s = 7 TeV and scaled to root s = 2.76 TeV. For the three meson species, R-AA shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/c in the 20% most central collisions. The suppression is reduced for peripheral collisions.
Resumo:
This paper describes a measurement of the Z/ѵ* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of √s = 7 TeV at the LHC. The measurement is performed in the Z/ѵ* → e+e− and Z/ѵ* → μ+μ− channels, using data corresponding to an integrated luminosity of 4.7 fb−1. Normalized differential cross sections as a function of the Z/ѵ* boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for Z/ѵ* rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.
Resumo:
A search for new physics using three-lepton (trilepton) data collected with the CDF II detector and corresponding to an integrated luminosity of 976 pb-1 is presented. The standard model predicts a low rate of trilepton events, which makes some supersymmetric processes, such as chargino-neutralino production, measurable in this channel. The mu+mu+l signature is investigated, where l is an electron or a muon, with the additional requirement of large missing transverse energy. In this analysis, the lepton transverse momenta with respect to the beam direction (pT) are as low as 5 GeV/c, a selection that improves the sensitivity to particles which are light as well as to ones which result in leptonically decaying tau leptons. At the same time, this low-p_T selection presents additional challenges due to the non-negligible heavy-quark background at low lepton momenta. This background is measured with an innovative technique using experimental data. Several dimuon and trilepton control regions are investigated, and good agreement between experimental results and standard-model predictions is observed. In the signal region, we observe one three-muon event and expect 0.4+/-0.1 mu+mu+l events
Resumo:
Determining the spin and the parity quantum numbers of the recently discovered Higgs-like boson at the LHC is a matter of great importance. In this Letter, we consider the possibility of using the kinematics of the tagging jets in Higgs production via the vector boson fusion (VBF) process to test the tensor structure of the Higgs-vector boson (HVV) interaction and to determine the spin and CP properties of the observed resonance. We show that an anomalous HVV vertex, in particular its explicit momentum dependence, drastically affects the rapidity between the two scattered quarks and their transverse momenta and, hence, the acceptance of the kinematical cuts that allow to select the VBF topology. The sensitivity of these observables to different spin-parity assignments, including the dependence on the LHC center of mass energy, are evaluated. In addition, we show that in associated Higgs production with a vector boson some kinematical variables, such as the invariant mass of the system and the transverse momenta of the two bosons and their separation in rapidity, are also sensitive to the spin-parity assignments of the Higgs-like boson.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
A review is presented of the statistical bootstrap model of Hagedorn and Frautschi. This model is an attempt to apply the methods of statistical mechanics in high-energy physics, while treating all hadron states (stable or unstable) on an equal footing. A statistical calculation of the resonance spectrum on this basis leads to an exponentially rising level density ρ(m) ~ cm-3 eβom at high masses.
In the present work, explicit formulae are given for the asymptotic dependence of the level density on quantum numbers, in various cases. Hamer and Frautschi's model for a realistic hadron spectrum is described.
A statistical model for hadron reactions is then put forward, analogous to the Bohr compound nucleus model in nuclear physics, which makes use of this level density. Some general features of resonance decay are predicted. The model is applied to the process of NN annihilation at rest with overall success, and explains the high final state pion multiplicity, together with the low individual branching ratios into two-body final states, which are characteristic of the process. For more general reactions, the model needs modification to take account of correlation effects. Nevertheless it is capable of explaining the phenomenon of limited transverse momenta, and the exponential decrease in the production frequency of heavy particles with their mass, as shown by Hagedorn. Frautschi's results on "Ericson fluctuations" in hadron physics are outlined briefly. The value of βo required in all these applications is consistently around [120 MeV]-1 corresponding to a "resonance volume" whose radius is very close to ƛπ. The construction of a "multiperipheral cluster model" for high-energy collisions is advocated.
Resumo:
Within a transport model it is shown that the neutron/proton ratio of squeezed-out nucleons perpendicular to the reaction plane, especially at high transverse momenta, in heavy-ion reactions induced by high energy neutron-rich nuclei can be a useful tool for studying the high density behavior of the nuclear symmetry energy.
Resumo:
Yields, correlation shapes, and mean transverse momenta p(T) of charged particles associated with intermediate-to high-p(T) trigger particles (2.5 < p(T) < 10 GeV/c) in d + Au and Au + Au collisions at root s(NN) = 200 GeV are presented. For associated particles at higher p(T) greater than or similar to 2.5 GeV/c, narrow correlation peaks are seen in d + Au and Au + Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle pT < 2 GeV/c, a large enhancement of the near- (Delta phi similar to 0) and away-side (Delta phi similar to pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au + Au collisions compared to d + Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at Delta phi similar to pi in central Au + Au collisions.
Resumo:
We report new results on identified (anti) proton and charged pion spectra at large transverse momenta (3 < p(T) < 10 GeV/c) from Cu + Cu collisions at root s(NN) = 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-p(T) and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au + Au data, and allow for a detailed exploration of the onset of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.
Resumo:
We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K-S(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K-S(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N-part. This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.
Resumo:
The cross section for the inclusive production of isolated photons has been measured in p (p) over bar collisions at root s = 1.96 TeV with the DO detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity vertical bar n vertical bar < 0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in p (p) over bar collisions at a center-of-mass energy root s=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb(-1). Azimuthal correlations are stronger at larger transverse momenta. These are well described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where contributions with low transverse momentum are significant.