843 resultados para Transmission of data flow model driven development
Resumo:
The use of middleware technology in various types of systems, in order to abstract low-level details related to the distribution of application logic, is increasingly common. Among several systems that can be benefited from using these components, we highlight the distributed systems, where it is necessary to allow communications between software components located on different physical machines. An important issue related to the communication between distributed components is the provision of mechanisms for managing the quality of service. This work presents a metamodel for modeling middlewares based on components in order to provide to an application the abstraction of a communication between components involved in a data stream, regardless their location. Another feature of the metamodel is the possibility of self-adaptation related to the communication mechanism, either by updating the values of its configuration parameters, or by its replacement by another mechanism, in case of the restrictions of quality of service specified are not being guaranteed. In this respect, it is planned the monitoring of the communication state (application of techniques like feedback control loop), analyzing performance metrics related. The paradigm of Model Driven Development was used to generate the implementation of a middleware that will serve as proof of concept of the metamodel, and the configuration and reconfiguration policies related to the dynamic adaptation processes. In this sense was defined the metamodel associated to the process of a communication configuration. The MDD application also corresponds to the definition of the following transformations: the architectural model of the middleware in Java code, and the configuration model to XML
Resumo:
Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.
Resumo:
This summary presents a methodology for supporting the development of AOSAs following the MDD paradigm. This new methodology is called PRISMA and allows the code generation from models which specify functional and non-functional requirements.
Resumo:
Based on recent advances in autonomic computing, we propose a methodology for the cost-effective development of self-managing systems starting from a model of the resources to be managed and using a general-purpose autonomic architecture.
Resumo:
Engineering adaptive software is an increasingly complex task. Here, we demonstrate Genie, a tool that supports the modelling, generation, and operation of highly reconfigurable, component-based systems. We showcase how Genie is used in two case-studies: i) the development and operation of an adaptive flood warning system, and ii) a service discovery application. In this context, adaptation is enabled by the Gridkit reflective middleware platform.
Resumo:
This paper presents a vision that allows the combined use of model-driven engineering, run-time monitoring, and animation for the development and analysis of components in real-time embedded systems. Key building block in the tool environment supporting this vision is a highly-customizable code generation process. Customization is performed via a configuration specification which describes the ways in which input is provided to the component, the ways in which run-time execution information can be observed, and how these observations drive animation tools. The environment is envisioned to be suitable for different activities ranging from quality assurance to supporting certification, teaching, and outreach and will be built exclusively with open source tools to increase impact. A preliminary prototype implementation is described.
Resumo:
The Software Engineering (SE) community has historically focused on working with models to represent functionality and persistence, pushing interaction modelling into the background, which has been covered by the Human Computer Interaction (HCI) community. Recently, adequately modelling interaction, and specifically usability, is being considered as a key factor for success in user acceptance, making the integration of the SE and HCI communities more necessary. If we focus on the Model-Driven Development (MDD) paradigm, we notice that there is a lack of proposals to deal with usability features from the very first steps of software development process. In general, usability features are manually implemented once the code has been generated from models. This contradicts the MDD paradigm, which claims that all the analysts? effort must be focused on building models, and the code generation is relegated to model to code transformations. Moreover, usability features related to functionality may involve important changes in the system architecture if they are not considered from the early steps. We state that these usability features related to functionality can be represented abstractly in a conceptual model, and their implementation can be carried out automatically.
Empirical study on the maintainability of Web applications: Model-driven Engineering vs Code-centric
Resumo:
Model-driven Engineering (MDE) approaches are often acknowledged to improve the maintainability of the resulting applications. However, there is a scarcity of empirical evidence that backs their claimed benefits and limitations with respect to code-centric approaches. The purpose of this paper is to compare the performance and satisfaction of junior software maintainers while executing maintainability tasks on Web applications with two different development approaches, one being OOH4RIA, a model-driven approach, and the other being a code-centric approach based on Visual Studio .NET and the Agile Unified Process. We have conducted a quasi-experiment with 27 graduated students from the University of Alicante. They were randomly divided into two groups, and each group was assigned to a different Web application on which they performed a set of maintainability tasks. The results show that maintaining Web applications with OOH4RIA clearly improves the performance of subjects. It also tips the satisfaction balance in favor of OOH4RIA, although not significantly. Model-driven development methods seem to improve both the developers’ objective performance and subjective opinions on ease of use of the method. This notwithstanding, further experimentation is needed to be able to generalize the results to different populations, methods, languages and tools, different domains and different application sizes.
Resumo:
The explosive growth in microprocessor technology and the increasing use of computers to store information has increased the demand for data communication channels. Because of this, data communication to mobile vehicles is increasing rapidly. In addition, data communication is seen as a method of relieving the current congestion of mobile radio telephone bands in the U.K. Highly reliable data communication over mobile radio channels is particularly difficult to achieve, primarily due to fading caused by multipath interference. In this thesis a data communication system is described for use over radio channels impaired by multipath interference. The thesis first describes radio communication in general, and multipath interference In particular. The practical aspects of fading channels are stressed because of their importance in the development of the system. The current U.K. land mobile radio scene is then reviewed, with particular emphasis on the use of existing mobile radio equipment for data communication purposes. The development of the data communication system is then described. This system is microprocessor based and uses an advanced form of automatic request repeat (ARQ) operation. It can be configured to use either existing radio-telephone equipment, totally new equipment specifically designed for data communication, or any combination of the two. Due to its adaptability, the system can automatically optimise itself for use over any channel, even if the channel parameters are changing rapidly. Results obtained from a particular implementation of the system, which is described in full, are presented. These show how the operation of the system has to change to accomodate changes in the channel. Comparisons are made between the practical results and the theoretical limits of the system.
Resumo:
Seeking alternatives for the economic system to face the several crises it has gone through lately (electrical power, cultural, financing and technological) brought about a new market involving the Kyoto Protocol signatory countries: the carbon market. The present article aims at assessing the carbon market institutional issue in Brazil by identifying the risks and opportunities inherent to the institutional agent characteristics and to that market rules. The research methodology was bibliographic and based on the analysis of the Securities and Exchange Commission of Brazil (Comissao de Valores Mobiliarios and Bolsa Mercantil de Valores) contents. Its theoretical basis rests on concepts of the institution and the new institutional economy. The results show that in spite of the risks and institutional problems it involves, the carbon market is promising due to the opportunities create by new technologies and energies developed to achieve and sustain the capitalist system new cycle, addressed to produce a clean development.