835 resultados para Transmission line modeling
Digital filtering of oscillations intrinsic to transmission line modeling based on lumped parameters
Resumo:
A correction procedure based on digital signal processing theory is proposed to smooth the numeric oscillations in electromagnetic transient simulation results from transmission line modeling based on an equivalent representation by lumped parameters. The proposed improvement to this well-known line representation is carried out with an Finite Impulse Response (FIR) digital filter used to exclude the high-frequency components associated with the spurious numeric oscillations. To prove the efficacy of this correction method, a well-established frequency-dependent line representation using state equations is modeled with an FIR filter included in the model. The results obtained from the state-space model with and without the FIR filtering are compared with the results simulated by a line model based on distributed parameters and inverse transforms. Finally, the line model integrated with the FIR filtering is also tested and validated based on simulations that include nonlinear and time-variable elements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this paper is to show a methodology to estimate the longitudinal parameters of transmission lines. The method is based on the modal analysis theory and developed from the currents and voltages measured at the sending and receiving ends of the line. Another proposal is to estimate the line impedance in function of the real-time load apparent power and power factor. The procedure is applied for a non-transposed 440 kV three-phase line. © 2011 IEEE.
Resumo:
A transmission line digital model is developed direct in the phase and time domains. The successive modal transformations considered in the three-phase representation are simplified and then the proposed model can be easily applied to several operation condition based only on the previous knowing of the line parameters, without a thorough theoretical knowledge of modal analysis. The proposed model is also developed based on lumped elements, providing a complete current and voltage profile at any point of the transmission system. This model makes possible the modeling of non-linear power devices and electromagnetic phenomena along the transmission line using simple electric circuit components, representing a great advantage when compared to several models based on distributed parameters and inverse transforms. In addition, an efficient integration method is proposed to solve the system of differential equations resulted from the line modeling by lumped elements, thereby making possible simulations of transient and steady state using a wide and constant integration step. © 2012 IEEE.
Resumo:
The objective of this paper is to show a methodology to estimate transmission line parameters. The method is applied in a single-phase transmission line using the method of least squares. In this method the longitudinal and transversal parameters of the line are obtained as a function of a set of measurements of currents and voltages (as well as their derivatives with respect to time) at the terminals of the line during the occurrence of a short-circuit phase-ground near the load. The method is based on the assumption that a transmission line can be represented by a single circuit π. The results show that the precision of the method depends on the length of the line, where it has a better performance for short lines and medium length. © 2012 IEEE.
Resumo:
A two-dimensional, 2D, finite-difference time-domain (FDTD) method is used to analyze two different models of multi-conductor transmission lines (MTL). The first model is a two-conductor MTL and the second is a threeconductor MTL. Apart from the MTL's, a three-dimensional, 3D, FDTD method is used to analyze a three-patch microstrip parasitic array. While the MTL analysis is entirely in time-domain, the microstrip parasitic array is a study of scattering parameter Sn in the frequency-domain. The results clearly indicate that FDTD is an efficient and accurate tool to model and analyze multiconductor transmission line as well as microstrip antennas and arrays.
Resumo:
Since the end of second world war, extra high voltage ac transmission has seen its development. The distances between generating and load centres as well as the amount of power to be handled increased tremendously for last 50 years. The highest commercial voltage has increased to 765 kV in India and 1,200 kV in many other countries. The bulk power transmission has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. Hence the present investigation aims to study accurately, the field distribution for various types of porcelain/ceramic insulators (Normal and Antifog discs) used for high-voltage transmission. The surface charge simulation method is employed for the field computation. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To allocate and size capacitors in a distribution system, an optimization algorithm, called Discrete Particle Swarm Optimization (DPSO), is employed in this paper. The objective is to minimize the transmission line loss cost plus capacitors cost. During the optimization procedure, the bus voltage, the feeder current and the reactive power flowing back to the source side should be maintained within standard levels. To validate the proposed method, the semi-urban distribution system that is connected to bus 2 of the Roy Billinton Test System (RBTS) is used. This 37-bus distribution system has 22 loads being located in the secondary side of a distribution substation (33/11 kV). Reducing the transmission line loss in a standard system, in which the transmission line loss consists of only about 6.6 percent of total power, the capabilities of the proposed technique are seen to be validated.
Resumo:
The development of algorithms, based on Haar functions, for extracting the desired frequency components from transient power-system relaying signals is presented. The applications of these algorithms to impedance detection in transmission line protection and to harmonic restraint in transformer differential protection are discussed. For transmission line protection, three modes of application of the Haar algorithms are described: a full-cycle window algorithm, an approximate full-cycle window algorithm, and a half-cycle window algorithm. For power transformer differential protection, the combined second and fifth harmonic magnitude of the differential current is compared with that of fundamental to arrive at a trip decision. The proposed line protection algorithms are evaluated, under different fault conditions, using realistic relaying signals obtained from transient analysis conducted on a model 400 kV, 3-phase system. The transformer differential protection algorithms are also evaluated using a variety of simulated inrush and internal fault signals.
Resumo:
A novel method to account for the transmission line resistances in structure preserving energy functions (SPEF) is presented in this paper. The method exploits the equivalence of a lossy network having the same conductance to susceptance ratio for all its elements to a lossless network with a new set of power injections. The system equations and the energy function are developed using centre of inertia (COI) variables and the loads are modelled as arbitrary functions of respective bus voltages. The application of SPEF to direct transient stability evaluation is presented considering a realistic power system example.