14 resultados para Transmetallation
Resumo:
One-pot hydrochalcogenation of 1-phenylthioacetylenes using organylselenolate and organyltellurolate anions generated by the insertions of selenium and tellurium in n-organyl lithium produced (Z)-1,2-bis(organylchalcogene)-1-alkenes. The chemical reactivity of these mixed 1,2-bis(organylchalcogene)-1-alkenes was studied by Te/Li and Se/Li stereoretentive exchanges carried out with n-butyl lithium, furnishing the new intermediate species (Z)-beta-organylthio vinyllithium anions, which were trapped with aldehydes, to give the (Z)-3-hydroxy vinyl thioethers with total control of the regio- and stereochemistry. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Les cyclopropanes sont des unités qui sont très importantes en raison de leur présence dans de nombreux produits naturels, dans certaines molécules synthétiques ayant une activité biologique, ainsi que dans plusieurs intermédiaires synthétiques. Les travaux décrits dans cet ouvrage portent sur l’halogénocyclopropanation stéréosélective d’alcools allyliques en présence d’un ligand chiral stœchiométrique de type dioxaborolane et de carbénoïdes de zinc substitués dérivés de composés organozinciques et d’haloformes. Nous avons ainsi développé des conditions pour l’iodo-, la chloro- et la fluorocyclopropanation stéréosélective. Une étude mécanistique portant sur la nature des carbénoïdes alpha-chlorés et alpha-bromés a révélé qu’il y a un échange des halogènes portés par ces carbénoïdes. Lors de la chlorocyclopropanation, le carbénoïde le plus réactif (alpha-chloré) réagit de façon prédominante en vertu du principe de Curtin-Hammet. Les iodocyclopropanes énantioenrichis ont pu être fonctionnalisés via une réaction d’échange lithium-iode suivie du traitement avec des électrophiles, ou via une réaction de transmétallation au zinc suivie d’un couplage de Negishi. Ainsi, toute une gamme de cyclopropanes 1,2,3-substitués énantioenrichis a pu être synthétisée. Dans l’optique de développer de nouvelles méthodologies de fonctionnalisation des cyclopropanes, nous nous sommes par la suite tournés vers le couplage croisé de type Hiyama-Denmark des cyclopropylsilanols. Dans cette voie synthétique, le groupement silanol a deux fonctions : il sert de groupement proximal basique lors de la cyclopropanation de Simmons-Smith et il subit la transmétallation au cours du couplage croisé. Dans l’étape du couplage croisé, la nature des ligands liés à l’atome de silicium s’est avérée cruciale au bon déroulement de la réaction. Ainsi, l’échange de ligands avec le diéthyl éthérate de trifluoroborane générant le cyclopropyltrifluorosilane in situ est requis pour obtenir de bons rendements. Le dernier volet de cet ouvrage porte sur la cyclisation d’iodures d’alkyle par substitution aromatique par voie homolytique catalysée par le nickel. Une série de composés de type tétrahydronaphtalène et thiochromane ont été préparés selon cette méthode. Une étude mécanistique a confirmé la nature radicalaire de cette réaction et suggère fortement l’action catalytique du nickel. De plus, des études de spectrométrie RMN DOSY ont montré une association entre le complexe de nickel et le substrat ainsi que la base employés dans cette réaction.
Resumo:
In previous work we have found that Cp2TiCl2 and its corresponding deriv. of tamoxifen, Titanocene tamoxifen, show an unexpected proliferative effect on hormone dependent breast cancer cells MCF-7. In order to check if this behavior is a general trend for titanocene derivs. we have tested two other titanocene derivs., Titanocene Y and Titanocene K, on this cell line. Interestingly, these two titanocene complexes behave in a totally different manner. Titanocene K is highly proliferative on MCF-7 cells even at low concns. (0.5 .mu.M), thus behave almost similarly to Cp2TiCl2. This proliferative effect is also obsd. in the presence of bovine serum albumin (BSA). In contrast, Titanocene Y alone has almost no effect on MCF-7 at a concn. of 10 .mu.M, but exhibits a significant dose dependent cytotoxic effect of up to 50% when incubated with BSA (20-50 .mu.g/mL). This confirms the crucial role played by the binding to serum proteins in the expression of the in vivo, cytotoxicity of the titanocene complexes. From the hydridolithiation reaction of 6-p-anisylfulvene with LiBEt3H followed by transmetallation with iron dichloride [bis-[(p-methoxy-benzyl)cyclopentadienyl]iron(II)] (Ferrocene Y) was synthesized. This complex, which was characterized by single crystal X-ray diffraction, contains the robust ferrocenyl unit instead of Ti assocd. with easily leaving groups such as chlorine and shows only a modest cytotoxicity against MCF-7 or MDA-MB-231 cells.
Resumo:
A review. 6-Substituted fulvenes are interesting and easily accessible starting materials for the synthesis of novel substituted titanocenes via reductive dimerization, carbolithiation or hydridolithiation reactions, which are followed by a transmetallation reaction with titanium tetrachloride in the latter two cases. Depending on the substitution pattern, these titanocenes prove to be bioorganometallic anticancer drugs, which have significant potential against advanced or metastatic renal-cell cancer. Patients bearing these stages of kidney cancer have a poor prognosis so far and therefore real progress in the area of metal-based anticancer drugs may come from this simple and effective synthetic approach. This tutorial review provides an insight into the synthesis of fulvene-derived titanocenes and their activity in preclin. expts.
Resumo:
Using 6-benzo[1,3]dioxolefulvene (1a), a series of benzodioxole substituted titanocenes was synthesized. The benzyl-substituted titanocene bis[(benzo[1,3]dioxole)-5-methylcyclopentadienyl] titanium (IV) dichloride (2a) was synthesized from the reaction of Super Hydride with 1a. An X-ray determined crystal structure was obtained for 2a. The ansa-titanocene (1,2-di(cyclopentadienyl)1,2-di-(benzo[1,3]dioxole)-ethanediyl) titanium(IV) dichloride (2b) was synthesized by reductive dimerisation of la with titanium dichloride. The diarylmethyl substituted titanocene bis(di(benzo[1,3]dioxole)-S-methylcyclopentadienyl) titanium(IV) dichloride (20 was synthesized by reacting la with the para-lithiated benzodioxole followed by transmetallation with titanium tetrachloride. When titanocenes 2a-c were tested against pig kidney (LLC-PK) cells inhibitory concentrations (IC50) of 2.8 X 10(-4), 1.6 x 10(-4) and 7.6 x 10(-5) m, respectively, were observed. These values represent improved cytotoxicity against LLC-PK, when compared with unsubstituted titanocene dichloride, but are not as impressive as values obtained for titanocenes previously synthesized using the above methods. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
From the carbolithiation of N,N-dimethylamino fulvene (3a) and different ortho-lithiated heterocycles (furan, thiophene and N-methylpyrrole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes 5a-c. When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 240, and 28 mu M for titanocenes 5a and 5b, respectively. The most cytotoxic titanocene 5c with an IC50 value of 5.5 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 400 times better than titanocene dichloride itself. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
From the reaction of tert-butyl lithium or n-butyl lithium with N-methylpyrrole (1a), furan (1b) or 2-bromo-thiophen (1c), 2-N-methylpyrrolyl lithium (2a), 2-furyl lithium (2b) or 2-thiophenyl lithium (2c), respectively, was obtained. When reacted with 6-(2-N-methylpyrrolyl) fulvene (3a), 6-(2-furyl) fulvene (3b) or 6-(2-thiophenyl) fulvene (3c), the corresponding lithiated intermediates were formed (4a-c). Titanocenes (5a-c) were obtained through transmetallation with titanium tetrachloride. When these titanocenes were tested against pig kidney epithelial (LLC-PK) cells, inhibitory concentrations (IC50) of 32 mu M, 140 mu M, and 240 mu M, respectively, were observed. These values represent improved cytotoxicity against LLC-PK, compared to their ansa-analogues. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
From the carbolithiation of 6-N,N-dimethylamino fulvene (3a) and different lithiated aryl species [p-N,N-dimethylanilinyl lithium, p-anisyl lithium and 4-lithio-benzo[1.3]dioxole (2a-c)], the corresponding lithium cyclopentadienide intermediates 4a-c were formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised and aryl-substituted titanocenes 5a-c. When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 54, 45 and 26 mu M for titanocenes 5a, b and c, respectively. The most cytotoxic titanocene in this paper, 5c is approximately 10 times less cytotoxic than cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, but approximately 100 times better than titanocene dichloride. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
From the carbolithiation of 6-N,N-dimethylamino fulvene (3a) and different ortho-lithiated indole derivatives (5-methoxy-N-methylindole, N-methylindole and N,N-dimethylaminomethylindole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes (5a-c). When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 37 and 71 mu M for titanocenes 5a and 5b respectively. The most cytotoxic titanocene in this paper, 5c showed an IC50 value of 8.4 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 250 times better than titanocene dichloride itself.
Resumo:
A C-O-dianionic zincate was generated by a Te/Li exchange reaction of an alkyltelluride, followed by Li/Zn transmetallation and reaction with methyllithium. The reaction between the enantiomerically pure (99% ee) (R)-dianionic zincate and benzoyl chloride led to 3-hydroxy-1-phenyl pentanone with total retention of the carbon configuration (99% ee). Similar results were obtained using the corresponding Lipshutz cyanocuprates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aim of the present work of thesis is to synthesize new non-noble metal based complexes to be employ in redox reactions by a metal-ligand cooperative mechanism. The need of replacing toxic and expensive precious metal complexes with more available and benign metals, has led to the development of new compounds based on cobalt and iron, which are the metals investigated in this study. A carbonyl-tetrahydroborato-bis[(2-diisopropylphosphino)ethyl]amine-cobalt complex bearing a PNP-type ligand is synthesized by a three-step route. Optimization attempt of reaction route were assessed in order to lowering reaction times and solvent waste. New cobalt complex has been tested in esters hydrogenation as well as in acceptorless dehydrogenative coupling of ethanol. Other varieties of substrates were also tested in order to evaluate any possible applications. Concerning iron complex, dicarbonyl-(η4-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)(1,3-dimethyl-ilidene)iron is synthesized by a three steps route, involving transmetallation of a silver complex, derived from an imidazolium salt, to iron complex. In order to avoid solvent waste, optimization is assessed. Studies were performed to assess activity of triscarbonyl iron precursor toward imidazolium salt and silver complexes.
Resumo:
Diversas classes de compostos orgânicos de telúrio foram exploradas neste trabalho. Inicialmente foi estudada a transmetalação entre teluretos alílicos e dibutil cianocupratos de lítio de ordem superior, levando aos respectivos cianocupratos alílicos de lítio. Estes, por sua vez, foram acoplados com triflatos vinílicos, importantes intermediários sintéticos preparados previamente a partir de teluretos vinílicos, levando a sistemas altamente insaturados em ótimos rendimentos (Esquema 1). (Ver no arquivo em PDF) Em seguida, foi explorada a reatividade de teluretos aromáticos frente a reagentes organometálicos. Cianocupratos arílicos, gerados a partir da transmetalação entre teluretos aromáticos com cianocupratos de lítio de ordem superior, foram adicionados a cetonas α,β -insaturadas, levando aos produtos de adição 1,4 em bons rendimentos (Esquema 2). (Ver no arquivo em PDF) Teluretos vinílicos funcionalizados de configuração Z também foram alvo de estudo visando a formação de ligação carbono-carbono. Reações de substituição entre estes teluretos e cianocupratos de lítio de ordem inferior levaram a cetonas e ésteres α,β- insaturados com estereoquímica defInida em ótimos rendimentos (Esquema 3). (Ver no arquivo em PDF) De agosto/20OJ a março/2004, a aluna realizou um estágio sanduíche na University of California, Santa Barbara, sob a orientação do Prof. Bruce H. Lipshutz, onde realizou estudos sobre a ciclização de Bergman, visando a síntese do fragmentobiarílico A-B da vancornicina. Diversas condições para a ciclização foram estudadas com um composto modelo (Esquema 4) (Ver no arquivo em PDF) e parte da síntese total do fragmento da vancomlcma, onde a ciclização seria a etapa-chave, foi realizada com sucesso (Esquema 5). (Ver no arquivo em PDF)
Resumo:
Although group 14 organometallic compounds (Si, Sn) have been well developed as transmetallation reagents in cross-coupling reactions, the application of organogermanium compounds as cross-coupling reagents is still a relatively new area with few papers published. This study aimed to develop methods for the synthesis of new classes of vinyl germane and vinyl silane compounds, mainly Z and E tris(trimethylsilyl)germanes and silanes, which were then applied to Pd-catalyzed cross-couplings with aryl and alkenyl halides. The stereoselective radical-mediated desulfonylation of vinyl sulfones with tris(trimethyl)germanium or silane hydrides provided access to the synthesis of trans vinyl germanes or silanes. Alternatively hydrogermylation or hydrosilylation of terminal alkynes gave cis vinyl germanes or silanes. The application of these new classes of organometallic compounds in cross-coupling reactions with various aryl and alkenyl halides under aqueous [NaOH/H2O2/Pd(PPh 3)4] and anhydrous [KH/t-BuOOH/Pd(PPh 3)4] oxidative conditions were investigated. ^ It was found that the vinyl tris(trimethylsilyl)germanes successfully underwent Pd-catalyzed cross-couplings with aryl and alkenyl halides and aryl triflates under aqueous and anhydrous oxidative conditions. These procedures provided examples of "ligand-free" Pd-catalyzed coupling of organogermanes with aryl and alkenyl halides. Interestingly, couplings with fluorinated vinyl germanes appeared to occur more easily than with the corresponding (α-fluoro)vinyl stannanes and silanes since neither addition of an extra ligand nor activation with fluoride was necessary. The vinyl tris(trimethyl)silanes were found to be alternative substrates for the Hiyama reaction. The coupling of TTMS-silanes with various aryl, heteroaryl as well as alkenyl halides proceeded smoothly upon treatment with hydrogen peroxide in the presence of sodium hydroxide and fluoride ion. ^
Resumo:
The diverse biological properties exhibited by uridine analogues modified at carbon-5 of the uracil base have attracted special interest to the development of efficient methodologies for their synthesis. This study aimed to evaluate the possible application of vinyl tris(trimethylsilyl)germanes in the synthesis of conjugated 5-modified uridine analogues via Pd-catalyzed cross-coupling reactions. The stereoselective synthesis of 5-[(2-tris(trimethylsilyl)germyl)ethenyl]uridine derivatives was achieved by the radical-mediated hydrogermylation of the protected 5-alkynyluridine precursors with tris(trimethylsilyl)germane [(TMS)3GeH]. The hydrogermylation with Ph3GeH afforded in addition to the expected 5-vinylgermane, novel 5-(2-triphenylgermyl)acetyl derivatives. Also, the treatment with Me3GeH provided access to 5-vinylgermane uridine analogues with potential biological applications. Since the Pd-catalyzed cross-coupling of organogermanes has received much less attention than the couplings involving organostannanes and organosilanes, we were prompted to develop novel organogermane precursors suitable for transfer of aryl and/or alkenyl groups. The allyl(phenyl)germanes were found to transfer allyl groups to aryl iodides in the presence of sodium hydroxide or tetrabutylammonium fluoride (TBAF) via a Heck arylation mechanism. On the other hand, the treatment of allyl(phenyl)germanes with tetracyanoethylene (TCNE) effectively cleaved the Ge-C(allyl) bonds and promoted the transfer of the phenyl groups upon fluoride activation in toluene. It was discovered that the trichlorophenyl,- dichlorodiphenyl,- and chlorotriphenylgermanes undergo Pd-catalyzed cross-couplings with aryl bromides and iodides in the presence of TBAF in toluene with addition of the measured amount of water. One chloride ligand on the Ge center allows efficient activation by fluoride to promote transfer of one, two or three phenyl groups from the organogermane precursors. The methodology shows that organogermanes can render a coupling efficiency comparable to the more established stannane and silane counterparts. Our coupling methodology (TBAF/moist toluene) was also found to promote the transfer of multiple phenyl groups from analogous chloro(phenyl)silanes and stannanes.