26 resultados para Translocon
Resumo:
Edwardsiella tarda is an important Gram-negative enteric pathogen affecting both animals and humans. It possesses a type III secretion system (T3SS) essential for pathogenesis. EseB, EseC and EseD have been shown to form a translocon complex after secretion, while EscC functions as a T3SS chaperone for EseB and EseD. In this paper we identify EscA, a protein required for accumulation and proper secretion of another translocon component, EseC. The escA gene is located upstream of eseC and the EscA protein has the characteristics of T3SS chaperones. Cell fractionation experiments indicated that EscA is located in the cytoplasm and on the cytoplasmic membrane. Mutation with in-frame deletion of escA greatly decreased the secretion of EseC, while complementation of escA restored the wild-type secretion phenotype. The stabilization and accumulation of EseC in the cytoplasm were also affected in the absence of EscA. Mutation of escA did not affect the transcription of eseC but reduced the accumulation level of EseC as measured by using an EseC-LacZ fusion protein in Ed. tarda. Co-purification and co-immunoprecipitation studies demonstrated a specific interaction between EscA and EseC. Further analysis showed that residues 31-137 of EseC are required for EseC-EscA interaction, Mutation of EseC residues 31-137 reduced the secretion and accumulation of EseC in Ed. tarda. Finally, infection experiments showed that mutations of EscA and residues 31-137 of EseC increased the LD50 by approximately 10-fold in blue gourami fish. These results indicated that EscA functions as a specific chaperone for EseC and contributes to the virulence of Ed. tarda.
Resumo:
Edwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the 'translocon' of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by COILS. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of Delta escC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB-LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.
Resumo:
La sécrétion des protéines est un processus essentiel à la vie. Chez les eucaryotes, les protéines sécrétées transitent dans le réticulum endoplasmique par le pore de translocation. Le translocon est composé de trois sous-unités fondamentales nommées Sec61α, β et γ chez les mammifères, ou Sec61p, Sbh1p et Sss1p chez les levures. Tandis que le rôle des sous-unités α et γ est bien connu, celui de la sous-unité β demeure énigmatique. Plusieurs phénotypes distincts sont associés à cette protéine dans différents organismes, mais le haut niveau de conservation de séquence suggère plutôt une fonction universelle conservée. Récemment, Feng et al. (2007) ont montré que le domaine transmembranaire (TMD) de Sbh1p était suffisant pour complémenter plusieurs phénotypes associés à la délétion du gène chez Saccharomyces cerevisiae, suggérant un rôle important de cette région. L’objectif de mon projet de recherche consiste à étudier la fonction biologique de la sous-unité β du translocon et de son TMD chez Schizosaccharomyces pombe. Dans cette levure, j’ai découvert que le gène sbh1+ n’était pas essentiel à la viabilité à 30oC, mais qu’il était requis pour la croissance à basse température. La délétion de sbh1+ entraîne une sensibilité aux stress de la paroi cellulaire et une diminution de la sécrétion des protéines à 23oC. La surexpression de Sbh1p diminue elle aussi la sécrétion des protéines et altère la morphologie cellulaire. Ces phénotypes sont distincts de ceux observés chez S. cerevisiae, où la délétion des deux paralogues de Sec61β entraîne une sensibilité à haute température plutôt qu’à basse température. Malgré cela, les homologues de Sec61β de S. pombe et de S. cerevisiae sont tout deux capables de complémenter la thermosensibilité respective de chaque levure. La complémentation est possible même avec l’homologue humain de Sec61β, indiquant la conservation d’une fonction de Sec61β de la levure à l’homme. Remarquablement, le TMD de Sec61β de S. pombe, de S. cerevisiae et de l’humain sont suffisants pour complémenter la délétion génomique autant chez la levure à fission que chez la levure à bourgeons. Globalement, ces observations indiquent que le TMD de Sec61β exerce une fonction cellulaire conservée à travers les espèces.
Resumo:
Type III secretion systems of enteric bacteria enable translocation of effector proteins into host cells. Secreted proteins of verotoxigenic Escherichia coli O157 strains include components of a translocation apparatus, EspA, -B, and -D, as well as "effectors" such as the translocated intimin receptor (Tir) and the mitochondrion-associated protein (Map). This research has investigated the regulation of LEE4 translocon proteins, in particular EspA. EspA filaments could not be detected on the bacterial cell surface when E. coli O157:H7 was cultured in M9 minimal medium but were expressed from only a proportion of the bacterial population when cultured in minimal essential medium modified with 25 mM HEPES. The highest proportions of EspA-filamented bacteria were detected in late exponential phase, after which filaments were lost rapidly from the bacterial cell surface. Our previous research had shown that human and bovine E. coli O157:H7 strains exhibit marked differences in EspD secretion levels. Here it is demonstrated that the proportion of the bacterial population expressing EspA filaments was associated with the level of EspD secretion. The ability of individual bacteria to express EspA filaments was not controlled at the level of LEE1-4 operon transcription, as demonstrated by using both beta-galactosidase and green fluorescent protein (GFP) promoter fusions. All bacteria, whether expressing EspA filaments or not, showed equivalent levels of GFP expression when LEEI-4 translational fusions were used. Despite this, the LEE4-espADB mRNA was more abundant from populations with a high proportion of nonsecreting bacteria (low secretors) than from populations with a high proportion of secreting and therefore filamented bacteria (high secretors). This research demonstrates that while specific environmental conditions are required to induce LEEI-4 expression, a further checkpoint exists before EspA filaments are produced on the bacterial surface and secretion of effector proteins occurs. This checkpoint in E. coli O157:H7 translocon expression is controlled by a posttranscriptional mechanism acting on LEE4-espADB mRNA. The heterogeneity in EspA filamentation could arise from phase-variable expression of regulators that control this posttranscriptional mechanism.
Resumo:
When lipid synthesis is limited in HepG2 cells, apoprotein B100 (apoB100) is not secreted but rapidly degraded by the ubiquitin-proteasome pathway. To investigate apoB100 biosynthesis and secretion further, the physical and functional states of apoB100 destined for either degradation or lipoprotein assembly were studied under conditions in which lipid synthesis, proteasomal activity, and microsomal triglyceride transfer protein (MTP) lipid-transfer activity were varied. Cells were pretreated with a proteasomal inhibitor (which remained with the cells throughout the experiment) and radiolabeled for 15 min. During the chase period, labeled apoB100 remained associated with the microsomes. Furthermore, by crosslinking sec61β to apoB100, we showed that apoB100 remained close to the translocon at the same time apoB100–ubiquitin conjugates could be detected. When lipid synthesis and lipoprotein assembly/secretion were stimulated by adding oleic acid (OA) to the chase medium, apoB100 was deubiquitinated, and its interaction with sec61β was disrupted, signifying completion of translocation concomitant with the formation of lipoprotein particles. MTP participates in apoB100 translocation and lipoprotein assembly. In the presence of OA, when MTP lipid-transfer activity was inhibited at the end of pulse labeling, apoB100 secretion was abolished. In contrast, when the labeled apoB100 was allowed to accumulate in the cell for 60 min before adding OA and the inhibitor, apoB100 lipidation and secretion were no longer impaired. Overall, the data imply that during most of its association with the endoplasmic reticulum, apoB100 is close to or within the translocon and is accessible to both the ubiquitin-proteasome and lipoprotein-assembly pathways. Furthermore, MTP lipid-transfer activity seems to be necessary only for early translocation and lipidation events.
Resumo:
For proteins to enter the secretory pathway, the membrane attachment site (M-site) on ribosomes must bind cotranslationally to the Sec61 complex present in the endoplasmic reticulum membrane. The signal recognition particle (SRP) and its receptor (SR) are required for targeting, and the nascent polypeptide associated complex (NAC) prevents inappropriate targeting of nonsecretory nascent chains. In the absence of NAC, any ribosome, regardless of the polypeptide being synthesized, binds to the endoplasmic reticulum membrane, and even nonsecretory proteins are translocated across the endoplasmic reticulum membrane. By occupying the M-site, NAC prevents all ribosome binding unless a signal peptide and SRP are present. The mechanism by which SRP overcomes the NAC block is unknown. We show that signal peptide-bound SRP occupies the M-site and therefore keeps it free of NAC. To expose the M-site and permit ribosome binding, SR can pull SRP away from the M-site without prior release of SRP from the signal peptide.
Resumo:
Amino-terminal signal sequences target nascent secretory and membrane proteins to the endoplasmic reticulum for translocation. Subsequent interactions between the signal sequence and components of the translocation machinery at the endoplasmic reticulum are thought to be important for the productive engagement of the translocon by the ribosome-nascent chain complex. However, it is not clear whether all signal sequences carry out these posttargeting steps identically, or if there are differences in the interactions directed by one signal sequence versus another. In this study, we find substantial differences in the ability of signal sequences from different substrates to mediate closure of the ribosome–translocon junction early in translocation. We also show that these differences in some cases necessitate functional coordination between the signal sequence and mature domain for faithful translocation. Accordingly, the translocation of some proteins is sensitive to replacement of their signal sequences. In a particularly dramatic example, the topology of the prion protein was found to depend highly on the choice of signal sequence used to direct its translocation. Taken together, our results reveal an unanticipated degree of substrate-specific functionality encoded in N-terminal signal sequences.
Resumo:
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.
Resumo:
SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.
Resumo:
During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the DSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The DSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the DSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the DSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.
Resumo:
Cell surface structures termed knobs are one of the most important pathogenesis related protein complexes deployed by the malaria parasite Plasmodium falciparum at the surface of the infected erythrocyte. Despite their relevance to the disease, their structure, mechanisms of traffic and their process of assembly remain poorly understood. In this study, we have explored the possible role of a parasite-encoded Hsp40 class of chaperone, namely PFB0090c/PF3D7_0201800 (KAHsp40) in protein trafficking in the infected erythrocyte. We found the gene coding for PF3D7_0201800 to be located in a chromosomal cluster together with knob components KAHRP and PfEMP3. Like the knob components, KAHsp40 too showed the presence of PEXEL motif required for transport to the erythrocyte compartment. Indeed, sub-cellular fractionation and immunofluorescence analysis (IFA) showed KAHsp40 to be exported in the erythrocyte cytoplasm in a stage dependent manner localizing as punctuate spots in the erythrocyte periphery, distinctly from Maurer's cleft, in structures which could be the reminiscent of knobs. Double IFA analysis revealed co-localization of PF3D7_0201800 with the markers of knobs (KAHRP, PfEMP1 and PfEMP3) and components of the PEXEL translocon (Hsp101, PTEX150). KAHsp40 was also found to be in a complex with KAHRP, PfEMP3 and Hsp101 as confirmed by co-immunoprecipitation assay. Our results suggest potential involvement of a parasite encoded Hsp40 in chaperoning knob assembly in the erythrocyte compartment.
Resumo:
迟缓爱德华氏菌(Edwardsiella tarda)是重要的革兰氏阴性致病菌,可以感染包括人类在内的多种动物。由迟缓爱德华氏菌引发的爱德华氏菌病已经在许多水产养殖动物中被发现,每年给淡水和海水水产养殖业带来巨大的损失。目前为止对于迟缓爱德华氏菌病的防治以化学治疗为主,疫苗的研究还在进行中。III型分泌系统(T3SS)是E. tarda重要的致病因子,虽然T3SS基因簇的结构及部分基因的功能得到了初步研究,但其作用机制还未得到阐明。本研究着重开展了迟缓爱德华氏菌T3SS输送器蛋白EseC的分子伴侣的鉴定及功能研究,并对输送器蛋白及其免疫功能进行了初步探讨,希望进一步地了解T3SS在E. tarda致病中的功能及其在疫苗研制中的作用。 一、迟缓爱德华氏菌III型分泌系统(T3SS)输送器蛋白EseC分子伴侣的鉴定和功能研究 以前的工作表明,EseB、EseC和EseD蛋白是E. tarda T3SS输送器蛋白的组成成分,在分泌到细菌细胞外后可以组成输送器装置。分子伴侣对于输送器蛋白的稳定和分泌具有重要的作用,EscC已经被鉴定为EseB和EseD的分子伴侣,而EseC的分子伴侣还没有得到鉴定。在本实验中,我们以EseC作为研究对象,主要开展了EseC分子伴侣鉴定的研究。 生物信息学分析表明,在E. tarda T3SS基因簇上的escA基因与eseC相邻,其编码的蛋白形成一个大的螺旋结构,为分子量较小(17.5kD)的酸性蛋白(pI 4.79),并与已鉴定的分子伴侣具有序列的同源性,这些符合细菌T3SS分子伴侣的特征。研究发现,EscA蛋白分布在细菌的细胞质和细胞膜上。在escA基因缺失后,大大降低了EseC分泌到细菌细胞外的量,同时EseC蛋白在细菌细胞质中的积聚量也减少,当escA基因缺失突变株得到escA基因互补后,EseC的分泌和在细胞质内的积聚恢复到了野生型菌株水平。氯霉素阻断蛋白质合成的实验发现,当细菌不表达EscA的情况下,EseC蛋白逐渐降解,说明了EscA可以影响EseC在胞质中的稳定。蛋白体外结合试验和免疫共沉淀实验发现,EseC和EscA在体外可以结合,在细菌细胞质中也可以相互结合,表明EseC和EscA可以相互作用。上述结果表明,EscA是EseC的分子伴侣。 在确定了EscA是EseC的分子伴侣之后,我们进一步确定EscA对EseC表达的影响,以及两者相互作用的结构域。通过检测转录水平和翻译水平的EseC-LacZ融合蛋白表达情况,发现在EscA缺失的情况下,EseC的转录水平没有变化,而翻译水平下降,表明EscA对EseC的影响在转录后水平。通过构建含有部分结构域缺失的escA或eseC的体外共表达体系,并进行Western blot分析,确定了EseC的31-137氨基酸序列为与EscA结合的区域,而在EscA中并没有找到与EseC结合的区域。EseC的31-137氨基酸片段缺失后,EseC的分泌和在E. tarda细菌细胞中的积聚下降,其下降幅度与escA突变株相当,进一步表明EseC的31-137氨基酸为与EscA相互作用的区域。最后人工感染实验表明,分子伴侣EscA及其与EseC的相互作用对E. tarda的致病力有影响。 二、迟缓爱德华氏菌T3SS输送器蛋白的研究 一些研究表明,T3SS在细菌与宿主相互作用的过程中表达,在体外诱导的条件下也可表达。为了确定E. tarda T3SS体外诱导表达的条件,我们检测了不同培养温度、pH条件下,E. tarda T3SS输送器蛋白表达的情况。研究表明,37°C条件下,E. tarda生长快,T3SS的输送器蛋白表达较低;28°C条件下,T3SS的输送器蛋白表达最高,而在20°C条件下,没有检测到T3SS输送器蛋白的表达。在28°C和37°C的培养条件下,中性和碱性相对酸性来说适合细菌的生长和T3SS输送器蛋白的表达。我们分析了E. tarda野生型和输送器蛋白突变株中的输送器蛋白的细胞分布,并据此推测输送器形成的机制。单一输送器蛋白的缺失不影响其它两个输送器蛋白的积聚,而输送器蛋白的分泌之间存在一定的相互影响。 通过检测输送器蛋白突变株ΔeseB, ΔeseC, ΔeseD生长、泳动、自凝聚和溶血能力的变化,发现在输送器蛋白基因缺失后,体外培养的E. tarda的生长速度变慢,泳动、自凝聚和溶血能力也变弱,说明了输送器蛋白在细菌的生长和功能行使中的重要作用。 为了检测输送器蛋白的免疫保护效果,我们克隆了eseD基因,将其在表达菌株BL21(DE3)中进行表达,并将重组表达的EseD蛋白经Ni-NTA树脂进行纯化。以EseD纯化蛋白作为蛋白抗原对大菱鲆进行注射,EseD蛋白表现出了对鱼类的免疫原性,其抗体效价在第7周达到了最高,为1:5120。攻毒实验表明该蛋白对于保护大菱鲆免疫E. tarda的感染具有帮助作用,在105cfu攻毒浓度下大菱鲆的相对存活率(RPS)为62.5%。结果说明EseD蛋白可以作为蛋白抗原疫苗的候选,并能够在保护鱼类免疫爱德华氏菌病中发挥作用。
Resumo:
Codirecteur de recherche: Dr Sylvain Meloche
Resumo:
The control of Pratylenchus goodeyi a common nematode parasite of banana crop in Madeira Island can benefit from searching for natural nematicides through plants extracts. With this aim we submitted Solanum nigrum and S. sisymbriifolium dried plants to a sequential extraction in the solvent sequence of dichloromethane, acetone, ethanol and water, and to na aqueous extraction of the fresh and dried plants. Analyses with the extracts at several concentrations were used to assess mobility and mortality on P. goodeyi. Results showed that the water extract and aqueous extracts from both plants at a concentration of 10 mg/mL affected nematode mobility and caused mortality but the acetone extract from S. nigrum was the most efficient, causing 100% mortality whereas dichloromethane had no effect on P. goodeyi. Determination of the lipophilic and phenolic compounds present in the two most effective Solanum extracts (acetone and water) and in dichloromethane extract revealed that some of these compounds had nematicidal activity. S. nigrum acetone extract (10 mg/mL) was used to find out the nematicidal potential following the effect at gene expression level and nematode behaviour. Genes coding for calreticulin and beta-1,4- endoglucanase related to parasitism and translocon-associated protein putatively connected to stress were obtained and its relative expression assessed in nematodes exposed to the extract. Results revealed that expression of Pg-CRT decreased showing to influence the infection, Pg-ENG remained steady and Pg-TRAPδ was induced over time exposure. Biological assays showed that P. goodeyi mobility and ability to infect the banana roots were affected as a decrease in the number of nematodes that reached the roots was obtained with the increased exposure time to the extract being implicated in the infection success. The information obtained from this thesis showed that S. nigrum has potential to be used for the development of a new control strategy against plant-parasitic nematodes.
Resumo:
Atypical enteropathogenic Escherichia coli (aEPEC) strains are diarrheal pathogens that lack bundle-forming pilus production but possess the virulence-associated locus of enterocyte effacement. aEPEC strain 1551-2 produces localized adherence (LA) on HeLa cells; however, its isogenic intimin (eae) mutant produces a diffuse-adherence (DA) pattern. In this study, we aimed to identify the DA-associated adhesin of the 1551-2 eae mutant. Electron microscopy of 1551-2 identified rigid rod-like pili composed of an 18-kDa protein, which was identified as the major pilin subunit of type 1 pilus (T1P) by mass spectrometry analysis. Deletion of fimA in 1551-2 affected biofilm formation but had no effect on adherence properties. Analysis of secreted proteins in supernatants of this strain identified a 150-kDa protein corresponding to SslE, a type 2 secreted protein that was recently reported to be involved in biofilm formation of rabbit and human EPEC strains. However, neither adherence nor biofilm formation was affected in a 1551-2 sslE mutant. We then investigated the role of the EspA filament associated with the type 3 secretion system (T3SS) in DA by generating a double eae espA mutant. This strain was no longer adherent, strongly suggesting that the T3SS translocon is the DA adhesin. In agreement with these results, specific anti-EspA antibodies blocked adherence of the 1551-2 eae mutant. Our data support a role for intimin in LA, for the T3SS translocon in DA, and for T1P in biofilm formation, all of which may act in concert to facilitate host intestinal colonization by aEPEC strains. ©2013, American Society for Microbiology.