994 resultados para Transition P systems
Resumo:
Ponencia en el Congreso NIT 2010
Resumo:
Transition P Systems are a parallel and distributed computational model based on the notion of the cellular membrane structure. Each membrane determines a region that encloses a multiset of objects and evolution rules. Transition P Systems evolve through transitions between two consecutive configurations that are determined by the membrane structure and multisets present inside membranes. Moreover, transitions between two consecutive configurations are provided by an exhaustive non-deterministic and parallel application of evolution rules. But, to establish the rules to be applied, it is required the previous calculation of useful, applicable and active rules. Hence, computation of useful evolution rules is critical for the whole evolution process efficiency, because it is performed in parallel inside each membrane in every evolution step. This work defines usefulness states through an exhaustive analysis of the P system for every membrane and for every possible configuration of the membrane structure during the computation. Moreover, this analysis can be done in a static way; therefore membranes only have to check their usefulness states to obtain their set of useful rules during execution.
Resumo:
ransition P-systems are based on biological membranes and try to emulate cell behavior and its evolution due to the presence of chemical elements. These systems perform computation through transition between two consecutive configurations, which consist in a m-tuple of multisets present at any moment in the existing m regions of the system. Transition between two configurations is performed by using evolution rules also present in each region. Among main Transition P-systems characteristics are massive parallelism and non determinism. This work is part of a very large project and tries to determine the design of a hardware circuit that can improve remarkably the process involved in the evolution of a membrane. Process in biological cells has two different levels of parallelism: the first one, obviously, is the evolution of each cell inside the whole set, and the second one is the application of the rules inside one membrane. This paper presents an evolution of the work done previously and includes an improvement that uses massive parallelism to do transition between two states. To achieve this, the initial set of rules is transformed into a new set that consists in all their possible combinations, and each of them is treated like a new rule (participant antecedents are added to generate a new multiset), converting an unique rule application in a way of parallelism in the means that several rules are applied at the same time. In this paper, we present a circuit that is able to process this kind of rules and to decode the result, taking advantage of all the potential that hardware has to implement P Systems versus previously proposed sequential solutions.
Resumo:
In the field of Transition P systems implementation, it has been determined that it is very important to determine in advance how long takes evolution rules application in membranes. Moreover, to have time estimations of rules application in membranes makes possible to take important decisions related to hardware / software architectures design. The work presented here introduces an algorithm for applying active evolution rules in Transition P systems, which is based on active rules elimination. The algorithm complies the requisites of being nondeterministic, massively parallel, and what is more important, it is time delimited because it is only dependant on the number of membrane evolution rules.
Resumo:
Transition P Systems are a parallel and distributed computational model based on the notion of the cellular membrane structure. Each membrane determines a region that encloses a multiset of objects and evolution rules. Transition P Systems evolve through transitions between two consecutive configurations that are determined by the membrane structure and multisets present inside membranes. Moreover, transitions between two consecutive configurations are provided by an exhaustive non-deterministic and parallel application of active evolution rules subset inside each membrane of the P system. But, to establish the active evolution rules subset, it is required the previous calculation of useful and applicable rules. Hence, computation of applicable evolution rules subset is critical for the whole evolution process efficiency, because it is performed in parallel inside each membrane in every evolution step. The work presented here shows advantages of incorporating decision trees in the evolution rules applicability algorithm. In order to it, necessary formalizations will be presented to consider this as a classification problem, the method to obtain the necessary decision tree automatically generated and the new algorithm for applicability based on it.
Resumo:
Transition P systems are computational models based on basic features of biological membranes and the observation of biochemical processes. In these models, membrane contains objects multisets, which evolve according to given evolution rules. In the field of Transition P systems implementation, it has been detected the necessity to determine whichever time are going to take active evolution rules application in membranes. In addition, to have time estimations of rules application makes possible to take important decisions related to the hardware / software architectures design. In this paper we propose a new evolution rules application algorithm oriented towards the implementation of Transition P systems. The developed algorithm is sequential and, it has a linear order complexity in the number of evolution rules. Moreover, it obtains the smaller execution times, compared with the preceding algorithms. Therefore the algorithm is very appropriate for the implementation of Transition P systems in sequential devices.
Resumo:
This paper presents a method for assigning natural numbers to Transition P systems based on a Gödelization process. The paper states step by step the way for obtaining Gödel numbers for each one of the fundamental elements of Transition P systems –multisets of objects, evolution rules, priorities relation, membrane structure- until defining the Gödel number of a given Transition P system.
Resumo:
P systems or Membrane Computing are a type of a distributed, massively parallel and non deterministic system based on biological membranes. They are inspired in the way cells process chemical compounds, energy and information. These systems perform a computation through transition between two consecutive configurations. As it is well known in membrane computing, a configuration consists in a m-tuple of multisets present at any moment in the existing m regions of the system at that moment time. Transitions between two configurations are performed by using evolution rules which are in each region of the system in a non-deterministic maximally parallel manner. This work is part of an exhaustive investigation line. The final objective is to implement a HW system that evolves as it makes a transition P-system. To achieve this objective, it has been carried out a division of this generic system in several stages, each of them with concrete matters. In this paper the stage is developed by obtaining the part of the system that is in charge of the application of the active rules. To count the number of times that the active rules is applied exist different algorithms. Here, it is presents an algorithm with improved aspects: the number of necessary iterations to reach the final values is smaller than the case of applying step to step each rule. Hence, the whole process requires a minor number of steps and, therefore, the end of the process will be reached in a shorter length of time.
Resumo:
Membrane systems are computational equivalent to Turing machines. However, their distributed and massively parallel nature obtains polynomial solutions opposite to traditional non-polynomial ones. At this point, it is very important to develop dedicated hardware and software implementations exploiting those two membrane systems features. Dealing with distributed implementations of P systems, the bottleneck communication problem has arisen. When the number of membranes grows up, the network gets congested. The purpose of distributed architectures is to reach a compromise between the massively parallel character of the system and the needed evolution step time to transit from one configuration of the system to the next one, solving the bottleneck communication problem. The goal of this paper is twofold. Firstly, to survey in a systematic and uniform way the main results regarding the way membranes can be placed on processors in order to get a software/hardware simulation of P-Systems in a distributed environment. Secondly, we improve some results about the membrane dissolution problem, prove that it is connected, and discuss the possibility of simulating this property in the distributed model. All this yields an improvement in the system parallelism implementation since it gets an increment of the parallelism of the external communication among processors. Proposed ideas improve previous architectures to tackle the communication bottleneck problem, such as reduction of the total time of an evolution step, increase of the number of membranes that could run on a processor and reduction of the number of processors.
Resumo:
The goal of this paper is twofold. Firstly, to survey in a systematic and uniform way the main results regarding the way membranes can be placed on processors in order to get a software/hardware simulation of P-Systems in a distributed environment. Secondly, we improve some results about the membrane dissolution problem, prove that it is connected, and discuss the possibility of simulating this property in the distributed model. All this yields an improvement in the system parallelism implementation since it gets an increment of the parallelism of the external communication among processors. Also, the number of processors grows in such a way that is notorious the increment of the parallelism in the application of the evolution rules and the internal communica-tionsstudy because it gets an increment of the parallelism in the application of the evolution rules and the internal communications. Proposed ideas improve previous architectures to tackle the communication bottleneck problem, such as reduction of the total time of an evolution step, increase of the number of membranes that could run on a processor and reduction of the number of processors
Resumo:
In this work, we propose a variant of P system based on the rewriting of string-objects by means of evolutionary rules. The membrane structure of such a P system seems to be a very natural tool for simulating the filters in accepting networks of evolutionary processors with filtered connections. We discuss an informal construction supporting this simulation. A detailed proof is to be considered in an extended version of this work.
Resumo:
Tissue P systems generalize the membrane structure tree usual in original models of P systems to an arbitrary graph. Basic opera- tions in these systems are communication rules, enriched in some variants with cell division or cell separation. Several variants of tissue P systems were recently studied, together with the concept of uniform families of these systems. Their computational power was shown to range between P and NP ? co-NP , thus characterizing some interesting borderlines between tractability and intractability. In this paper we show that com- putational power of these uniform families in polynomial time is limited by the class PSPACE . This class characterizes the power of many clas- sical parallel computing models
Resumo:
La computación con membranas surge como una alternativa a la computación tradicional. Dentro de este campo se sitúan los denominados Sistemas P de Transición que se basan en la existencia de regiones que contienen recursos y reglas que hacen evolucionar a dichos recursos para poder llevar a cada una de las regiones a una nueva situación denominada configuración. La sucesión de las diferentes configuraciones conforman la computación. En este campo, el Grupo de Computación Natural de la Universidad Politécnica de Madrid lleva a cabo numerosas investigaciones al amparo de las cuales se han publicado numerosos artículos y realizado varias tesis doctorales. Las principales vías de investigación han sido, hasta el momento, el estudio del modelo teórico sobre el que se definen los Sistemas P, el estudio de los algoritmos que se utilizan para la aplicación de las reglas de evolución en las regiones, el diseño de nuevas arquitecturas que mejoren las comunicaciones entre las diferentes membranas (regiones) que componen el sistema y la implantación de estos sistemas en dispositivos hardware que pudiesen definir futuras máquinas basadas en este modelo. Dentro de este último campo, es decir, dentro del objetivo de construir finalmente máquinas que puedan llevar a cabo la funcionalidad de la computación con Sistemas P, la presente tesis doctoral se centra en el diseño de dos procesadores paralelos que, aplicando variantes de algoritmos existentes, favorezcan el crecimiento en el nivel de intra-paralelismo a la hora de aplicar las reglas. El diseño y creación de ambos procesadores presentan novedosas aportaciones al entorno de investigación de los Sistemas P de Transición en tanto en cuanto se utilizan conceptos que aunque previamente definidos de manera teórica, no habían sido introducidos en el hardware diseñado para estos sistemas. Así, los dos procesadores mantienen las siguientes características: - Presentan un alto rendimiento en la fase de aplicación de reglas, manteniendo por otro lado una flexibilidad y escalabilidad medias que son dependientes de la tecnología final sobre la que se sinteticen dichos procesadores. - Presentan un alto nivel de intra-paralelismo en las regiones al permitir la aplicación simultánea de reglas. - Tienen carácter universal en tanto en cuanto no depende del carácter de las reglas que componen el Sistema P. - Tienen un comportamiento indeterminista que es inherente a la propia naturaleza de estos sistemas. El primero de los circuitos utiliza el conjunto potencia del conjunto de reglas de aplicación así como el concepto de máxima aplicabilidad para favorecer el intra-paralelismo y el segundo incluye, además, el concepto de dominio de aplicabilidad para determinar el conjunto de reglas que son aplicables en cada momento con los recursos existentes. Ambos procesadores se diseñan y se prueban mediante herramientas de diseño electrónico y se preparan para ser sintetizados sobre FPGAs. ABSTRACT Membrane computing appears as an alternative to traditional computing. P Systems are placed inside this field and they are based upon the existence of regions called “membranes” that contain resources and rules that describe how the resources may vary to take each of these regions to a new situation called "configuration". Successive configurations conform computation. Inside this field, the Natural Computing Group of the Universidad Politécnica of Madrid develops a large number of works and researches that provide a lot of papers and some doctoral theses. Main research lines have been, by the moment, the study of the theoretical model over which Transition P Systems are defined, the study of the algorithms that are used for the evolution rules application in the regions, the design of new architectures that may improve communication among the different membranes (regions) that compose the whole system and the implementation of such systems over hardware devices that may define machines based upon this new model. Within this last research field, this is, within the objective of finally building machines that may accomplish the functionality of computation with P Systems, the present thesis is centered on the design of two parallel processors that, applying several variants of some known algorithms, improve the level of the internal parallelism at the evolution rule application phase. Design and creation of both processors present innovations to the field of Transition P Systems research because they use concepts that, even being known before, were never used for circuits that implement the applying phase of evolution rules. So, both processors present the following characteristics: - They present a very high performance during the application rule phase, keeping, on the other hand, a level of flexibility and scalability that, even known it is not very high, it seems to be acceptable. - They present a very high level of internal parallelism inside the regions, allowing several rule to be applied at the same time. - They present a universal character meaning this that they are not dependent upon the active rules that compose the P System. - They have a non-deterministic behavior that is inherent to this systems nature. The first processor uses the concept of "power set of the application rule set" and the concept of "maximal application" number to improve parallelism, and the second one includes, besides the previous ones, the concept of "applicability domain" to determine the set of rules that may be applied in each moment with the existing resources.. Both processors are designed and tested with the design software by Altera Corporation and they are ready to be synthetized over FPGAs.
Resumo:
Researching simulation/implementation of membranes systems is very recent. Present literature gathers new publications frequently about software/hardware, data structures and algorithms for implementing P system evolution. In this context, this work presents a framework which goal is to make tasks of researchers of this field easier. Hence, it establishes the set of cooperating classes that form a reusable and flexible design for the customizable evaluation with new data structures and algorithms. Moreover, it includes customizable services for correcting, monitoring and logging the evolution and edition, recovering, automatic generating, persistence and visualizing P systems.
Resumo:
Membrane systems are computational equivalent to Turing machines. However, its distributed and massively parallel nature obtain polynomial solutions opposite to traditional non-polynomial ones. Nowadays, developed investigation for implementing membrane systems has not yet reached the massively parallel character of this computational model. Better published approaches have achieved a distributed architecture denominated “partially parallel evolution with partially parallel communication” where several membranes are allocated at each processor, proxys are used to communicate with membranes allocated at different processors and a policy of access control to the communications is mandatory. With these approaches, it is obtained processors parallelism in the application of evolution rules and in the internal communication among membranes allocated inside each processor. Even though, external communications share a common communication line, needed for the communication among membranes arranged in different processors, are sequential. In this work, we present a new hierarchical architecture that reaches external communication parallelism among processors and substantially increases parallelization in the application of evolution rules and internal communications. Consequently, necessary time for each evolution step is reduced. With all of that, this new distributed hierarchical architecture is near to the massively parallel character required by the model.