999 resultados para Transition P System
Resumo:
P systems or Membrane Computing are a type of a distributed, massively parallel and non deterministic system based on biological membranes. They are inspired in the way cells process chemical compounds, energy and information. These systems perform a computation through transition between two consecutive configurations. As it is well known in membrane computing, a configuration consists in a m-tuple of multisets present at any moment in the existing m regions of the system at that moment time. Transitions between two configurations are performed by using evolution rules which are in each region of the system in a non-deterministic maximally parallel manner. This work is part of an exhaustive investigation line. The final objective is to implement a HW system that evolves as it makes a transition P-system. To achieve this objective, it has been carried out a division of this generic system in several stages, each of them with concrete matters. In this paper the stage is developed by obtaining the part of the system that is in charge of the application of the active rules. To count the number of times that the active rules is applied exist different algorithms. Here, it is presents an algorithm with improved aspects: the number of necessary iterations to reach the final values is smaller than the case of applying step to step each rule. Hence, the whole process requires a minor number of steps and, therefore, the end of the process will be reached in a shorter length of time.
Resumo:
Transition P Systems are a parallel and distributed computational model based on the notion of the cellular membrane structure. Each membrane determines a region that encloses a multiset of objects and evolution rules. Transition P Systems evolve through transitions between two consecutive configurations that are determined by the membrane structure and multisets present inside membranes. Moreover, transitions between two consecutive configurations are provided by an exhaustive non-deterministic and parallel application of evolution rules. But, to establish the rules to be applied, it is required the previous calculation of useful, applicable and active rules. Hence, computation of useful evolution rules is critical for the whole evolution process efficiency, because it is performed in parallel inside each membrane in every evolution step. This work defines usefulness states through an exhaustive analysis of the P system for every membrane and for every possible configuration of the membrane structure during the computation. Moreover, this analysis can be done in a static way; therefore membranes only have to check their usefulness states to obtain their set of useful rules during execution.
Resumo:
Transition P Systems are a parallel and distributed computational model based on the notion of the cellular membrane structure. Each membrane determines a region that encloses a multiset of objects and evolution rules. Transition P Systems evolve through transitions between two consecutive configurations that are determined by the membrane structure and multisets present inside membranes. Moreover, transitions between two consecutive configurations are provided by an exhaustive non-deterministic and parallel application of active evolution rules subset inside each membrane of the P system. But, to establish the active evolution rules subset, it is required the previous calculation of useful and applicable rules. Hence, computation of applicable evolution rules subset is critical for the whole evolution process efficiency, because it is performed in parallel inside each membrane in every evolution step. The work presented here shows advantages of incorporating decision trees in the evolution rules applicability algorithm. In order to it, necessary formalizations will be presented to consider this as a classification problem, the method to obtain the necessary decision tree automatically generated and the new algorithm for applicability based on it.
Resumo:
Transition P systems are computational models based on basic features of biological membranes and the observation of biochemical processes. In these models, membrane contains objects multisets, which evolve according to given evolution rules. In the field of Transition P systems implementation, it has been detected the necessity to determine whichever time are going to take active evolution rules application in membranes. In addition, to have time estimations of rules application makes possible to take important decisions related to the hardware / software architectures design. In this paper we propose a new evolution rules application algorithm oriented towards the implementation of Transition P systems. The developed algorithm is sequential and, it has a linear order complexity in the number of evolution rules. Moreover, it obtains the smaller execution times, compared with the preceding algorithms. Therefore the algorithm is very appropriate for the implementation of Transition P systems in sequential devices.
Resumo:
ransition P-systems are based on biological membranes and try to emulate cell behavior and its evolution due to the presence of chemical elements. These systems perform computation through transition between two consecutive configurations, which consist in a m-tuple of multisets present at any moment in the existing m regions of the system. Transition between two configurations is performed by using evolution rules also present in each region. Among main Transition P-systems characteristics are massive parallelism and non determinism. This work is part of a very large project and tries to determine the design of a hardware circuit that can improve remarkably the process involved in the evolution of a membrane. Process in biological cells has two different levels of parallelism: the first one, obviously, is the evolution of each cell inside the whole set, and the second one is the application of the rules inside one membrane. This paper presents an evolution of the work done previously and includes an improvement that uses massive parallelism to do transition between two states. To achieve this, the initial set of rules is transformed into a new set that consists in all their possible combinations, and each of them is treated like a new rule (participant antecedents are added to generate a new multiset), converting an unique rule application in a way of parallelism in the means that several rules are applied at the same time. In this paper, we present a circuit that is able to process this kind of rules and to decode the result, taking advantage of all the potential that hardware has to implement P Systems versus previously proposed sequential solutions.
Resumo:
The P System antigens have been detected in numerous parasites, bacterias and viruses, nevertheless the clinical significance is still unknown. The aim was to study the presence of P1 antigenic determiners in A. lumbricoides extracts by means of the use of 6 different monoclonal antibodies of well-known concentrations and Ig class. We worked with 14 A. lumbricoides extracts. Inhibition Agglutination Test was made in a bromelin enzymatic medium and 4 ºC temperature. Titre, Score and Sensitivity Parameter were determined for each monoclonal antibody against red cells suspension used as revealing system. Ten extracts inhibited the agglutination of all anti P1 monoclonal antibodies. The 4 remaining extracts only inhibited the agglutination of some of them. It is demonstrated that the extracts have P1 activity. This activity is independent of titre, Score, Sensitivity Parameter, concentration and Ig class and it depends on the epitope at which the monoclonal antibody is directed.
Resumo:
En aquesta memòria s'explica com, per la implantació de SAP en l'Hospital Universitari Arnau de Vilanova s'ha de realitzar una adequació tant de xarxa, com de parc d'ordinadors i impressores, instal·lació d'un nou cpd. Es fa un anàlisi previ de la situació i s'expliqen quins canvis es fan i perquè.
Resumo:
La característica fundamental de la Computación Natural se basa en el empleo de conceptos, principios y mecanismos del funcionamiento de la Naturaleza. La Computación Natural -y dentro de ésta, la Computación de Membranas- surge como una posible alternativa a la computación clásica y como resultado de la búsqueda de nuevos modelos de computación que puedan superar las limitaciones presentes en los modelos convencionales. En concreto, la Computación de Membranas se originó como un intento de formular un nuevo modelo computacional inspirado en la estructura y el funcionamiento de las células biológicas: los sistemas basados en este modelo constan de una estructura de membranas que actúan a la vez como separadores y como canales de comunicación, y dentro de esa estructura se alojan multiconjuntos de objetos que evolucionan de acuerdo a unas determinadas reglas de evolución. Al conjunto de dispositivos contemplados por la Computación de Membranas se les denomina genéricamente como Sistemas P. Hasta el momento los Sistemas P sólo han sido estudiados a nivel teórico y no han sido plenamente implementados ni en medios electrónicos, ni en medios bioquímicos, sólo han sido simulados o parcialmente implementados. Por tanto, la implantación de estos sistemas es un reto de investigación abierto. Esta tesis aborda uno de los problemas que debe ser resuelto para conseguir la implantación de los Sistemas P sobre plataformas hardware. El problema concreto se centra en el modelo de los Sistemas P de Transición y surge de la necesidad de disponer de algoritmos de aplicación de reglas que, independientemente de la plataforma hardware sobre la que se implementen, cumplan los requisitos de ser no deterministas, masivamente paralelos y además su tiempo de ejecución esté estáticamente acotado. Como resultado se ha obtenido un conjunto de algoritmos (tanto para plataformas secuenciales, como para plataformas paralelas) que se adecúan a las diferentes configuraciones de los Sistemas P. ABSTRACT The main feature of Natural Computing is the use of concepts, principles and mechanisms inspired by Nature. Natural Computing and within it, Membrane Computing emerges as an potential alternative to conventional computing and as from the search for new models of computation that may overcome the existing limitations in conventional models. Specifically, Membrane Computing was created to formulate a new computational paradigm inspired by the structure and functioning of biological cells: it consists of a membrane structure, which acts as separators as well as communication channels, and within this structure are stored multisets of objects that evolve according to certain evolution rules. The set of computing devices addressed by Membrane Computing are generically known P systems. Up to now, no P systems have been fully implemented yet in electronic or biochemical means. They only have been studied in theory, simulated or partially implemented. Therefore, the implementation of these systems is an open research challenge. This thesis addresses one of the problems to be solved in order to deploy P systems on hardware platforms. This specific problem is focused on the Transition P System model and emerges from the need of providing application rules algorithms that independently on the hardware platform on which they are implemented, meets the requirements of being nondeterministic, massively parallel and runtime-bounded. As a result, this thesis has developed a set of algorithms for both platforms, sequential and parallel, adapted to all possible configurations of P systems.
Resumo:
Ponencia en el Congreso NIT 2010