302 resultados para Transimpedance amplifiers


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Breast cancer is the most common type of cancer worldwide. The effectiveness of its treatment depends on early stage detection, as well as on the accuracy of its diagnosis. Recently, diagnosis techniques have been submitted to relevant breakthroughs with the upcoming of Magnetic Resonance Imaging, Ultrasound Sonograms and Positron Emission Tomography (PET) scans, among others. The work presented here is focused on studying the application of a PET system to a Positron Emission Mammography (PEM) system. A PET/PEM system works under the principle that a scintillating crystal will detect a gamma-ray pulse, originated at the cancerous cells, converting it into a correspondent visible light pulse. The latter must then be converted into an electrical current pulse by means of a Photo- -Sensitive Device (PSD). After the PSD there must be a Transimpedance Amplifier (TIA) in order to convert the current pulse into a suitable output voltage, in a time period lower than 40 ns. In this Thesis, the PSD considered is a Silicon Photo-Multiplier (SiPM). The usage of this recently developed type of PSD is impracticable with the conventional TIA topologies, as it will be proven. Therefore, the usage of the Regulated Common-Gate (RCG) topology will be studied in the design of the amplifier. There will be also presented two RCG variations, comprising a noise response improvement and differential operation of the circuit. The mentioned topology will also be tested in a Radio-Frequency front-end, showing the versatility of the RCG. A study comprising a low-voltage self-biasing feedback TIA will also be shown. The proposed circuits will be simulated with standard CMOS technology (UMC 130 nm), using a 1.2 V power supply. A power consumption of 0.34 mW with a signal-to-noise ratio of 43 dB was achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation is about the research carried on developing an MPS (Multipurpose Portable System) which consists of an instrument and many accessories. The instrument is portable, hand-held, and rechargeable battery operated, and it measures temperature, absorbance, and concentration of samples by using optical principles. The system also performs auxiliary functions like incubation and mixing. This system can be used in environmental, industrial, and medical applications. ^ Research emphasis is on system modularity, easy configuration, accuracy of measurements, power management schemes, reliability, low cost, computer interface, and networking. The instrument can send the data to a computer for data analysis and presentation, or to a printer. ^ This dissertation includes the presentation of a full working system. This involved integration of hardware and firmware for the micro-controller in assembly language, software in C and other application modules. ^ The instrument contains the Optics, Transimpedance Amplifiers, Voltage-to-Frequency Converters, LCD display, Lamp Driver, Battery Charger, Battery Manager, Timer, Interface Port, and Micro-controller. ^ The accessories are a Printer, Data Acquisition Adapter (to transfer the measurements to a computer via the Printer Port and expand the Analog/Digital conversion capability), Car Plug Adapter, and AC Transformer. This system has been fully evaluated for fault tolerance and the schemes will also be presented. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a small transmit array of transistor amplifiers illuminated by a passive array of microstrip patches in the reactive near-field region is investigated as a power-combining structure. The two cases considered are when the transmit array radiates in a free space and when a passive array similar to the one used for illumination collects the radiated power. A comparison of the performance of the proposed structure against the alternative one, which uses a conventional horn antenna as a power-launching/receiving device, is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, pp. 2258 – 2261, Seattle, EUA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern fully integrated receiver architectures, require inductorless circuits to achieve their potential low area, low cost, and low power. The low noise amplifier (LNA), which is a key block in such receivers, is investigated in this thesis. LNAs can be either narrowband or wideband. Narrowband LNAs use inductors and have very low noise figure, but they occupy a large area and require a technology with RF options to obtain inductors with high Q. Recently, wideband LNAs with noise and distortion cancelling, with passive loads have been proposed, which can have low NF, but have high power consumption. In this thesis the main goal is to obtain a very low area, low power, and low-cost wideband LNA. First, it is investigated a balun LNA with noise and distortion cancelling with active loads to boost the gain and reduce the noise figure (NF). The circuit is based on a conventional balun LNA with noise and distortion cancellation, using the combination of a common-gate (CG) stage and common-source (CS) stage. Simulation and measurements results, with a 130 nm CMOS technology, show that the gain is enhanced by about 3 dB and the NF is reduced by at least 0.5 dB, with a negligible impact on the circuit linearity (IIP3 is about 0 dBm). The total power dissipation is only 4.8 mW, and the active area is less than 50 x 50 m2 . It is also investigated a balun LNA in which the gain is boosted by using a double feedback structure.We propose to replace the load resistors by active loads, which can be used to implement local feedback loops (in the CG and CS stages). This will boost the gain and reduce the noise figure (NF). Simulation results, with the same 130 nm CMOS technology as above, show that the gain is 24 dB and NF is less than 2.7 dB. The total power dissipation is only 5.4 mW (since no extra blocks are required), leading to a figure-of-merit (FoM) of 3.8 mW

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriorhodopsin (BR) is a photosensitive protein which functions as a light-driven proton pump. Due to its photoactivity, BR could be used in photosensing and information processing which has inspired researchers to study the photoelectric response and the appropriate measurement instrumentation for BR. In this thesis, the measurement instrumentation connected to a dry BR sensor was confirmed to affect the photovoltage response measured by using voltage amplifiers. Changing of the input impedance of the measurement instrumentation was shown to alter a part of the measured photovoltage response. The photocurrent measurements using transimpedance amplifier and the presented electrical equivalent circuit were used to show that the photocurrent measurements have no significant effect on the photoelectric response. The photocurrent was shown to be a derivate of the photovoltage response measured from the dry BR sensor when it was compared to the response measured with a voltage amplifier. This confirmed that another part of the photovoltage response was not affected by the measurement instrumentation. The time-variant behavior of the dry BR sensor was confirmed in both the photocurrent and the photovoltage measurements. This was caused by the fact that the capacitance of the dry BR sensor changes with the excitation light intensity.