919 resultados para Transient Seepage


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A two-dimensional finite difference model, which solves mixed type of Richards' equation, whose non-linearity is dealt with modified Picard's iteration and strongly implicit procedure to solve the resulting equations, is presented. Modeling of seepage flow through heterogeneous soils, which is common in the field is addressed in the present study. The present model can be applied to both unsaturated and saturated soils and can handle very dry initial condition and steep wetting fronts. The model is validated by comparing experimental results reported in the literature. Newness of this two dimensional model is its application on layered soils with transient seepage face development, which has not been reported in the literature. Application of the two dimensional model for studying unconfined drainage due to sudden drop of water table at seepage face in layered soils is demonstrated. In the present work different sizes of rectangular flow domain with different types of layering are chosen. Sensitivity of seepage height due to problem dimension of layered system is studied. The effect of aspect ratio on seepage face development in case of the flow through layered soil media is demonstrated. The model is also applied to random heterogeneous soils in which the randomness of the model parameters is generated using the turning band technique. The results are discussed in terms of phreatic surface and seepage height development and also flux across the seepage face. Such accurate modeling of seepage face development and quantification of flux moving across the seepage face becomes important while modeling transport problems in variably saturated media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rainfall can disrupt the balance of natural soil slope. This imbalance will be accelerated by existence of cracks in soil slope, which lead to decreasing shear strength and increasing hydraulic conductivity of the soil slope. Some research works have been conducted on the effects of surface-cracks on slope stability. However, the influence of deep-cracks is yet to be investigated. Limited availability of deep crack data due to the lack of effective sub-soil investigation methods could be one of the obstacles. To emphasize the effects of deep cracks in soil slope on its rain-induced instability, a natural soil slope in Indonesia that failed in 31st October 2010 due to heavy rainfall was analyzed for stability with and without deep cracks in the slope. The slope stability analysis was conducted using SLOPE/W coupling with the results of transient seepage analysis (SEEP/W) that simulate the pore-water pressure development in the slope during the rainfall. The results of Electrical Resistivity Tomography (ERT) survey, bore-hole tests and geometrical survey conducted on the slope before its failure were used to identify the soil layers’ stratification including deep cracks, the properties of different soil layers, and geometrical parameters of the slope for the analysis. The results showed that it is vital to consider the existence of deep crack in soil slopes in analysing their instability induced by rainfalls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rainfall has been identified as one of the main causes for embankment failures in areas where high annual rainfall is experienced. The inclination of the embankment slope is important for its stability during rainfall. In this study, instrumented model embankments were subjected to artificial rainfalls to investigate the effects of the slope inclination on their stability. The results of the study suggested that when the slope inclination is greater than the friction angle of the soil, the failure is initiated by the loss of soil suction and when it is smaller than the friction angle of the soil, the failure is initiated by the positive pore water pressure developed at the toe of the slope. Further, slopes become more susceptible to sudden collapse during rainfall as the slope angle increases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Awareness to avoid losses and casualties due to rain-induced landslide is increasing in regions that routinely experience heavy rainfall. Improvements in early warning systems against rain-induced landslide such as prediction modelling using rainfall records, is urgently needed in vulnerable regions. The existing warning systems have been applied using stability chart development and real-time displacement measurement on slope surfaces. However, there are still some drawbacks such as: ignorance of rain-induced instability mechanism, mislead prediction due to the probabilistic prediction and short time for evacuation. In this research, a real-time predictive method was proposed to alleviate the drawbacks mentioned above. A case-study soil slope in Indonesia that failed in 2010 during rainfall was used to verify the proposed predictive method. Using the results from the field and laboratory characterizations, numerical analyses can be applied to develop a model of unsaturated residual soils slope with deep cracks and subject to rainwater infiltration. Real-time rainfall measurement in the slope and the prediction of future rainfall are needed. By coupling transient seepage and stability analysis, the variation of safety factor of the slope with time were provided as a basis to develop method for the real-time prediction of the rain-induced instability of slopes. This study shows the proposed prediction method has the potential to be used in an early warning system against landslide hazard, since the FOS value and the timing of the end-result of the prediction can be provided before the actual failure of the case study slope.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the finite volume method, a 2D numerical model for seepage in unsaturated soil has been established to study the rainfall infiltration in the fractured slope.The result shows that more rain may infiltrate into the slope due to existing fracture and then the pore pressure rises correspondingly. Very probably, it is one of the crucial factors accounting for slope failure. Furthermore a preliminary study has been conducted to investigate the influence of various fracture and rainfall factors such as the depth, width and location of a crack, surface condition, rainfall intensity and duration. Pore pressure and water volumetric content during the transient seepage are carefully examined to reveal the intrinsic mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A general numerical algorithm in the context of finite element scheme is developed to solve Richards’ equation, in which a mass-conservative, modified head based scheme (MHB) is proposed to approximate the governing equation, and mass-lumping techniques are used to keep the numerical simulation stable. The MHB scheme is compared with the modified Picard iteration scheme (MPI) in a ponding infiltration example. Although the MHB scheme is a little inferior to the MPI scheme in respect of mass balance, it is superior in convergence character and simplicity. Fully implicit, explicit and geometric average conductivity methods are performed and compared, the first one is superior in simulation accuracy and can use large time-step size, but the others are superior in iteration efficiency. The algorithm works well over a wide variety of problems, such as infiltration fronts, steady-state and transient water tables, and transient seepage faces, as demonstrated by its performance against published experimental data. The algorithm is presented in sufficient detail to facilitate its implementation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the experimental results and the characteristics of the pressure-sensitive fractured formation, a transient flow model is developed for the deep naturally-fractured reservoirs with different outer boundary conditions. The finite element equations for the model are derived. After generating the unstructured grids in the solution regions, the finite element method is used to calculate the pressure type curves for the pressure-sensitive fractured reservoir with different outer boundaries, such as the infinite boundary, circle boundary and combined linear boundaries, and the characteristics of the type curves are comparatively analyzed. The effects on the pressure curves caused by pressure sensitivity module and the effective radius combined parameter are determined, and the method for calculating the pressure-sensitive reservoir parameters is introduced. By analyzing the real field case in the high temperature and pressure reservoir, the perfect results show that the transient flow model for the pressure-sensitive fractured reservoir in this paper is correct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

- This paper presents a validation proposal for development of diagnostic and prognostic algorithms for SF6 puffer circuit-breakers reproduced from actual site waveforms. The re-ignition/restriking rates are duplicated in given circuits and the cumulative energy dissipated in interrupters by the restriking currents. The targeted objective is to provide a simulated database for diagnosis of re-ignition/restrikes relating to the phase to earth voltage and the number of re-ignition/restrikes as well as estimating the remaining life of SF6 circuit-breakers. The model-based diagnosis of a tool will be useful in monitoring re-ignition/restrikes as well as predicting a nozzle’s lifetime. This will help ATP users with practical study cases and component data compilation for shunt reactor switching and capacitor switching. This method can be easily applied with different data for the different dielectric curves of circuit breakers and networks. This paper presents modelling details and some of the available cases, required project support, the validation proposal, the specific plan for implementation and the propsed main contributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents dynamic hysteresis band height control to reduce the overshoot and undershoot issue on output voltage caused by load change. The converters in this study are Boost and Positive Buck-Boost (PBB) converters. PBB has been controlled to work in a step up conversion and avoid overshoot when load is changed. Simulation and experimental results have been presented to verify the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the numerical simulation of the 3D seepage flow with fractional derivatives in porous media is considered under two special cases: non-continued seepage flow in uniform media (NCSFUM) and continued seepage flow in non-uniform media (CSF-NUM). A fractional alternating direction implicit scheme (FADIS) for the NCSF-UM and a modified Douglas scheme (MDS) for the CSF-NUM are proposed. The stability, consistency and convergence of both FADIS and MDS in a bounded domain are discussed. A method for improving the speed of convergence by Richardson extrapolation for the MDS is also presented. Finally, numerical results are presented to support our theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.