997 resultados para Transforming Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TEL/PDGFβR fusion protein is the product of the t(5;12) translocation in patients with chronic myelomonocytic leukemia. The TEL/PDGFβR is an unusual fusion of a putative transcription factor, TEL, to a receptor tyrosine kinase. The translocation fuses the amino terminus of TEL, containing the helix-loop-helix (HLH) domain, to the transmembrane and cytoplasmic domain of the PDGFβR. We hypothesized that TEL/PDGFβR self-association, mediated by the HLH domain of TEL, would lead to constitutive activation of the PDGFβR tyrosine kinase domain and cellular transformation. Analysis of in vitro-translated TEL/PDGFβR confirmed that the protein self-associated and that self-association was abrogated by deletion of 51 aa within the TEL HLH domain. In vivo, TEL/PDGFβR was detected as a 100-kDa protein that was constitutively phosphorylated on tyrosine and transformed the murine hematopoietic cell line Ba/F3 to interleukin 3 growth factor independence. Transformation of Ba/F3 cells required the HLH domain of TEL and the kinase activity of the PDGFβR portion of the fusion protein. Immunoblotting demonstrated that TEL/PDGFβR associated with multiple signaling molecules known to associate with the activated PDGFβR, including phospholipase C γ1, SHP2, and phosphoinositol-3-kinase. TEL/PDGFβR is a novel transforming protein that self-associates and activates PDGFβR-dependent signaling pathways. Oligomerization of TEL/PDGFβR that is dependent on the TEL HLH domain provides further evidence that the HLH domain, highly conserved among ETS family members, is a self-association motif.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent infection membrane protein 1 (LMP1), the Epstein-Barr virus transforming protein, associates with tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) and TRAF3. Since TRAF2 has been implicated in TNFR-mediated NF-kappa B activation, we have evaluated the role of TRAF2 in LMP1-mediated NF-kappa B activation. TRAF2 binds in vitro to the LMP1 carboxyl-terminal cytoplasmic domain (CT), coprecipitates with LMP1 in B lymphoblasts, and relocalizes to LMP1 plasma membrane patches. A dominant negative TRAF2 deletion mutant that lacks amino acids 6-86 (TRAF/ delta 6-86) inhibits NF-kappa B activation from the LMP1 CT and competes with TRAF2 for LMP1 binding. TRAF2 delta 6-86 inhibits NF-kappa B activation mediated by the first 45 amino acids of the LMP1 CT by more than 75% but inhibits NF-kappa B activation through the last 55 amino acids of the CT by less than 40%. A TRAF interacting protein, TANK, inhibits NF-kappa B activation by more than 70% from both LMP1 CT domains. These data implicate TRAF2 aggregation in NF-kappa B activation by the first 45 amino acids of the LMP1 CT and suggest that a different TRAF-related pathway may be involved in NF-kappa B activation by the last 55 amino acids of the LMP1 CT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reactivity of sera from patients with cervical cancer with the E7 protein of human papilloma virus type 16 (HPV16) was estimated using a novel non-radioactive immunoprecipitation assay and four established protein-and peptide-based immunoassays. Six of 14 sera from patients with cervical cancer and 1 of 10 sera from healthy laboratory staff showed repeated reactivity with E7 in at least one assay. Four of the 7 reactive sera were consistently reactive in more than one assay, but only one was reactive in all four assays. Following immunization with E7, 2 of 5 patients with cervical cancer had increased E7-specific reactivity, measurable in one or more assays. No single assay was particularly sensitive for E7 reactivity, or predictive of cervical cancer. Mapping of E7 reactivity to specific E7 peptides was unsuccessful, suggesting that natural or induced E7 reactivity in human serum is commonly directed to conformational epitopes of E7, These results suggest that each assay employed with is study measures a different aspect of E7 reactivity, and that various reactivities to E7 may manifest following HPV infection or immunization. This finding is of significance for monitoring of E7 immunotherapy and for serological screening for cervical cancer. Copyright (C) 2000 S.Karger, AG. Basel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The E7 transforming protein of Human Papillomavirus type 16 (HPV16) is expressed in the skin of a line of RIB mice transgenic for the E6 and E7 open reading frames of HPV16 driven from the alpha A crystallin promoter (FVB alpha AcryHPV16E6E7). We have transferred skin from FVB alpha AcryHPV16E6E7 mice to naive or E7-primed syngeneic NE recipients to assess whether the E7 protein of HPV16 can function as a minor transplantation antigen (MTA) and promote skin graft rejection. FVB mice did not reject E7 expressing tail or flank skin grafts. E7 immunized FVB x C57BL/6J mice recipients of FVB alpha AcryHPV16E6E7 x C57BL/6J skin generated humoral and DTH responses to E7 in vivo and E7-specific CTL precursors in the spleen, but failed to reject 57 expressing tail skin grafts by 100 days posttransfer. Thus although HPV16 E7 + ve mesenchymal and endodermal tumors can be eliminated by an E7-specific immune response, the same protein is unable to act as a MTA and promote graft rejection when expressed in skin cells. Lack of rejection of grafts expressing MTAs such as E7 may be relevant to the immunology of epithelial tumors expressing tumor-specific antigens and to our understanding of the immunology of diseases of the skin. (C) 1997 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of adjuvant on induction of human papillomavirus type 16 E7 protein-specific cytotoxic T lymphocytes (CTL) and immunoglobulin G (IgG)(2a) antibody was studied in C57BL/6 J mice immunized with various adjuvants and E7 protein. Quil-A adjuvant, but not complete Freund's adjuvant (CFA) or Algammulin, induced a T-helper 1 (Th1)-type response to E7, which was characterized by CTL activity against a tumour cell line transfected with E7 protein and by E7-specific IgG(2a). All tested adjuvants elicited comparable levels of E7-specific IgG(1). The longest duration and greatest magnitude of CTL response was seen following two immunizations with the highest dose of E7 and Quil-A. Simultaneous immunization with a Th1 and a T helper 2 (Th2)-promoting adjuvant gave a Th1-type response. However, E7 and Quil-A were unable to induce a Th1-type response (as measured by the inability to generate anti-E7 IgG(2a) antibody) in animals with a pre-existing Th2-type response to E7. These results suggest that saponin adjuvants may be suitable for immunotherapy in humans where a Th1-type response is sought, provided that there is no pre existing Th2-type response to the antigen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When expressed as a transgene from the keratin 14 (K14) promoter in an MHC class II-deficient mouse, I-Ab expressed in thymic cortical epithelium promotes positive but not negative selection of I-Ab-restricted CD4(+) T cells (Laufer, T. M. et al., Nature 1996. 383:81-85). Transgenic mice expressing the E7 protein of human papilloma virus 16 from the K14 promoter were studied to determine the consequence of expression of a cytoplasmic/nuclear protein from the K14 promoter. K14E7-transgenic mice express E7 in the thymus and skin without evidence for autoimmunity to E7. Repeated immunization of FVB(H-2(q)) or F1(C57BV6JxFVB) mice with E7 elicited similar antibody responses to the defined B cell epitopes of E7 in K14E7-transgenic and non-transgenic animals. In contrast, for each genetic background, a single immunization with E7 elicited demonstrable T cell proliferative responses to the major promiscuous T helper epitope of E7 in the transgenic but not the non-transgenic animals. Further,E7-immunized non-transgenic F1 (FVBxC57BL/6J) animals developed strong E7-specific cytotoxic T lymphocyte (CTL) responses and were protected against challenge with E7(+) tumors, whereas similarly immunized K14E7-transgenic animals had a markedly reduced CTL response to E7 and no E7-specific tumor protection was observed, although the antibody and CTL response to ovalbumin was normal. Expression of E7 protein as a transgene from the K14 promoter in the skin and thymus thus induces E7-specific tolerance in the cytotoxic T effector repertoire, together with expansion of the E7-specific T helper repertoire. These findings demonstrate that limited tissue distribution of an autoantigen may result in split tolerance to that autoantigen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recombinant bacille Calmette-Guerin (BCG) based vaccine delivery systems could potentially share the safety and effectiveness of BCG. We therefore prepared recombinant BCG vaccines which expressed the L1 late protein of the human papillomavirus (HPV) 6b or the E7 early protein of the HPV 16. The two recombinants were evaluated as immunogens in C57BL/6J and BALB/c mice, and compared with a conventional protein/adjuvant system using E7 or L1 mixed with Quil-A adjuvant. rBCG6bL1 and rBCG16E7 primed specific immune responses, represented by DTH, T-proliferation and antibody, and rBCG16E7 induced cytotoxic immune response to E7 protein. The magnitude of the observed responses were less than those elicited by protein/adjuvant vaccine. As recombinant BCG vaccines expressing HPV6bL1 or HPV16E7 persist at low levels in the immunised host, they may be beneficial to prime or retain memory responses to antigens, but are unlikely to be useful as a single component vaccine strategy. (C) 2000 Elsevier science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of generation of memory cytotoxic T cells (CTL) following immunization remains controversial. Using tumor protection and IFN-gamma ELISPOT assays in mice to detect functional CTL, we show that the initial effector CTL burst size after immunization is not directly related to the amount of functional memory CTL formed, suggesting that memory CTL are unlikely to arise stochastically from effector CTL. Induction of MHC class II-restricted T helper cells at the time of immunization by inclusion of a T helper peptide or protein in the immunogen, is necessary to generate memory CTL, although no T helper cell induction is required to generate effector CTL to a strong MHC class I-binding peptide. Host protective T cell memory correlates with the number of CTL epitope responsive IFN-gamma-secreting memory T cells as measured in an ELISPOT assay at the time of tumor challenge. We conclude that a different antigen presenting environment is required to induce long-lasting functional memory CTL, and non-cognate stimulation of the immune system is essential to allow generation of a long-lasting host protective memory CTL response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells infected with MuSVts110 express a viral RNA which contains an inherent conditional defect in RNA splicing. It has been shown previously that splicing of the MuSVts110 primary transcript is essential to morphological transformation of 6m2 cells in vitro. A growth temperature of 33$\sp\circ$C is permissive for viral RNA splicing,and, consequently, 6m2 cells appear morphologically transformed at this temperature. However, 6m2 cells appear phenotypically normal when incubated at 39$\sp\circ$C, the non-permissive temperature for viral RNA splicing.^ After a shift from 39$\sp\circ$C to 33$\sp\circ$C, the coordinate splicing of previously synthesized and newly transcribed MuSVts110 RNA was achieved. By S1 nuclease analysis of total RNA isolated at various times, 5$\sp\prime$ splice site cleavage of the MuSVts110 transcript appeared to occur 60 minutes after the shift to 33$\sp\circ$C, and 30 minutes prior to detectable exon ligation. In addition, consistent with the permissive temperatures and the kinetic timeframe of viral RNA splicing after a shift to 33$\sp\circ$C, four temperature sensitive blockades to primer extension were identified 26-75 bases upstream of the 3$\sp\prime$ splice site. These blockades likely reflect four branchpoint sequences utilized in the formation of MuSVts110 lariat splicing-intermediates.^ The 54-5A4 cell line is a spontaneous revertant of 6m2 cells and appears transformed at all growth temperatures. Primer extension sequence analysis has shown that a five base deletion occurred at the 3$\sp\prime$ splice site in MuSVts110 RNA allowing the expression of a viral transforming protein in 54-5A4 in the absence of RNA splicing, whereas in the parental 6m2 cell line, a splicing event is necessary to generate a similar transforming protein. As a consequence of this deletion, splicing cannot occur and the formation of the four MuSVts110 branched-intermediates were not observed at any temperature in 54-5A4 cells. However, 5$\sp\prime$ splice site cleavage was still detected at 33$\sp\circ$C.^ Finally, we have investigated the role of the 1488 bp deletion which occurred in the generation of MuSVts110 in the activation of temperature sensitive viral RNA splicing. This deletion appears solely responsible for splice site activation. Whether intron size is the crucial factor in MuSVts110 RNA splicing or whether inhibitory sequences were removed by the deletion is currently unknown. (Abstract shortened with permission of author.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MuSVts110 is a conditionally defective mutant of Moloney murine sarcoma virus which undergoes a novel tmperature-dependent splice event at growth temperatures of 33$\sp\circ$C or lower. Relative to wild-type MuSV-124, MuSVts110 contains a 1487 base deletion spanning from the 3$\sp\prime$ end of the p30 gag coding region to just downstream of the first v-mos initiation codon. As a result, the gag and mos genes are fused out of frame and no v-mos protein is expressed. However, upon a shift to 33$\sp\circ$C or lower, a splice event occurs which removes 431 bases, realigns the gag and mos genes, and allows read-through translation of a P85gag-mos transforming protein. Interestingly, while the cryptic splice sites utilized in MuSVts110 are present and unaltered in MuSV-124, they are never used. Due to the 1487 base deletion, the MuSV-124 intron was reduced from 1919 to 431 bases suggesting that intron size might be involved in the activation of these cryptic splice sites in MuSVts110. Since the splicing phenotype of the MuSVts110 equivalent (TS32 DNA) which contains the identical 1487 base deletion introduced into otherwise wild-type MuSV-124 DNA, was indistinguishable from authentic MuSVts110, it was concluded that this deletion alone is responsible for activation of the cryptic splice sites used in MuSVts110. These results also confirmed that thermodependent splicing is an intrinsic property of the viral RNA and not due to some cellular defect. Furthermore, analysis of gag gene deletion and frameshift MuSVts110 mutants demonstrated that viral gag gene proteins do not play a role in regulation of MuSVts110 splicing. Instead, cis-acting viral sequences appear to mediate regulation of the splice event.^ Our initial observation that truncation of the MuSVts110 transcript, leaving only residual amounts of the flanking exon sequences, completely abolished splicing activity argued that exon sequences might participate in the regulation of the splice event.^ Analysis of exon sequence involvement has also identified cis-acting sequences important in the thermodependence of the splice event. Data suggest that regulation of the MuSVts110 splice event involves multiple interactions between specific intron and exon sequences and spliceosome components which together limit splicing activity to temperatures of 33$\sp\circ$C or lower while simultaneously restricting splicing to a maximum of 50% efficiency. (Abstract shortened with permission of author.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85$\sp{\rm gag-mos}$, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing "defect" is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of "revertant" cells which constitutively express p85$\sp{\rm gag-mos}$ due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3$\sp\prime$ splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epidemiological studies have shown cadmium to induce cancer in humans, while experimental studies have proven this metal to be a potent tumor inducer in animals. However, cadmium appears nonmutagenic in most prokaryotic and eukaryotic mutagenesis assays. In this study, we present the identification of mutations in normal rat kidney cells infected with the mutant MuSVts110 retrovirus (6m2 cells) as a result of treatment with cadmium chloride. The detection of these mutations was facilitated by the use of a novel mutagenesis assay established in this laboratory. The 6m2 reversion assay is a positive selection system based on the conditional expression of the MuSVts110 v-mos gene. In MuSVts110 the gag and mos genes are fused out of frame, thus the translation of the v-mos sequence requires a frameshift in the genomic RNA. In 6m2 cells this frameshift is accomplished by the temperature-dependent splicing of the primary MuSVts110 transcript. Splicing of MuSVts110, which is mediated by cis-acting sequences, occurs when 6m2 cells are grown at 33$\sp\circ$C and below, but not at 39$\sp\circ$C. Therefore, 6m2 cells appear transformed at low growth temperatures, but take on a morphologically normal appearance when grown at high temperatures. The treatment of 6m2 cells with cadmium chloride resulted in the outgrowth of a number of cells that reverted to the transformed state at high growth temperatures. Analysis of the viral proteins expressed in these cadmium-induced 6m2 revertants suggested that they contained mutations in their MuSVts110 DNA. Sequencing of the viral DNA from three revertants that constitutively expressed the P85$\sp{gag{-}mos}$ transforming protein revealed five different mutations. The Cd-B2 revertant contained three of those mutations: an A-to-G transition 48 bases downstream of the MuSVts110 3$\sp\prime$ splice site, plus a G-to-T and an A-to-T transversion 84 and 100 bases downstream of the 5$\sp\prime$ splice site, respectively. The Cd-15-5 revertant also contained a point mutation, a T-to-C transition 46 bases downstream of the 5$\sp\prime$ splice site, while Cd-10-5 contained a three base deletion of MuSVts110 11 bases upstream of the 3$\sp\prime$ splice site. A fourth revertant, Cd-10, expressed a P100$\sp{gag{-}mos}$ transforming protein, and was found to have a two base deletion. This deletion accomplished the frameshift necessary for v-mos expression, but did not alter MuSVts110 RNA splicing and the expression of p85$\sp{gag{-}mos}.$ Lastly, sequencing of the MuSVts110 DNA from three spontaneous revertants revealed the same G to T transversion in each one. This was the same mutation that was found in the Cd-B2 revertant. These findings provide the first example of mutations resulting from exposure to cadmium and suggest, by the difference in each mutation, the complexity of the mechanism utilized by cadmium to induce DNA damage. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells infected with the conditionally defective MuSVts110 mutant of Moloney murine sarcoma virus are transformed at 33$\sp\circ$C but appear morphologically normal at 39$\sp\circ$C. The molecular basis for this phenotype is as follows: MuSVts110 contains a 1487 nucleotide central deletion that has truncated the 3$\sp\prime$ end to the gag gene and the 5$\sp\prime$ end of the mos gene. The resulting gag-mos junction is out-of-frame and the v-mos protein is not expressed. At 33$\sp\circ$C or lower, a splicing event is activated such that a 431 base intron is removed to realign the gag and mos gene in-frame, allowing the expression of a transforming protein P85$\sp{gag-mos}$. Temperature-dependent splicing appeared to be an intrinsic property of MuSVts110 transcripts and not a general feature of pre-mRNA splicing in 6m2 cells since splicing activity of a heterologous transcript in the same cells did not vary with temperature. The possibility that the splice event was not temperature-sensitive, but that the accumulation of spliced transcript at the lower growth temperatures was due to its selective thermolability was ruled out as stability studies revealed that the relative turnover rates of the unspliced and spliced MuSVts110 transcripts were not affected by temperature.^ The consensus sequences containing the splice sites activated in the MuSVts110 mutant (5$\sp\prime$ gag and 3$\sp\prime$ mos) are present, but not utilized, in wild-type MuSV-124. To test the hypothesis that it was the reduction of the 1919 base intervening sequence in MuSV-124 to 431 bases in MuSVts110 which activated splicing, the identical 1487 base deletion was introduced into cloned wild-type MuSV-124 DNA to create the MuSVts110 equivalent, ts32.^ To examine conditions permissive for splicing, we assayed splice site activation in a series of MuSV-124 "intron-modification" mutants. Data suggest that splicing in wild-type MuSV-124 may be blocked due to the lack of a proximal branchpoint sequence, but can be activated by those intron mutations which reposition a branch site closer to the 3$\sp\prime$ splice site. (Abstract shortened with permission of author.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neu gene (also c-erbB-2 or HER2) encodes a 185 kilodalton protein that is frequently overexpressed in breast, ovarian and non-small cell lung cancers. Study of the regulation of neu indicates that neu gene expression can be modulated by c-myc or by the adenovirus 5 E1a gene product. This study demonstrates that the transforming protein, large T antigen, of the simian virus 40 represses neu promoter activity. Repression of neu by large T antigen is mediated through the region $-$172 to $-$79 (relative to first ATG) of the neu promoter--unlike through $-$312 to $-$172 for c-myc or E1a. This suggests a different pathway for repression of neu by large T antigen. The 10 amino acid region of large T required for binding the tumor suppressor, retinoblastoma gene product, Rb, is not necessary for repression of neu. Moreover, the tumor suppressors, Rb and p53 can independently inhibit neu promoter activity. Rb inhibits neu through a 10 base pair G-rich enhancer (GTG element) ($-$243 to $-$234) and also through regions close to transcription initiation sites ($-$172 to $-$79). Mutant Rb unable to complex large T is able to repress the region close to transcription initiation but not the GTG enhancer. Thus, Rb inhibits the two regulatory domains of the neu gene by different mechanisms. Both Rb and p53 can repress the transforming activity of activated neu in focus forming assays. These data provide evidence that tumor suppressors regulate expression of growth stimulatory genes such as neu. Therefore, one reason for the overexpression of neu that is frequently seen in breast cancer cells may be due to functional inactivation of Rb and p53 which is also a common occurrence in breast cancer cells. ^