872 resultados para Transformation affine
Resumo:
Nous proposons de construire un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d’un organe. Nos travaux seront appliqués particulièrement à la construction d'un atlas numérique 3D de la totalité de la cornée humaine incluant la surface antérieure et postérieure à partir des cartes topographiques fournies par le topographe Orbscan II. Nous procédons tout d'abord par normalisation de toute une population de cornées. Dans cette étape, nous nous sommes basés sur l'algorithme de recalage ICP (iterative closest point) pour aligner simultanément les surfaces antérieures et postérieures d'une population de cornée vers les surfaces antérieure et postérieure d'une cornée de référence. En effet, nous avons élaboré une variante de l'algorithme ICP adapté aux images (cartes) de cornées qui tient compte de changement d'échelle pendant le recalage et qui se base sur la recherche par voisinage via la distance euclidienne pour établir la correspondance entre les points. Après, nous avons procédé pour la construction de l'atlas cornéen par le calcul des moyennes des élévations de surfaces antérieures et postérieures recalées et leurs écarts-types associés. Une population de 100 cornées saines a été utilisée pour construire l'atlas cornéen normal. Pour visualiser l’atlas, on a eu recours à des cartes topographiques couleurs similairement à ce qu’offrent déjà les systèmes topographiques actuels. Enfin, des observations ont été réalisées sur l'atlas cornéen reflétant sa précision et permettant de développer une meilleure connaissance de l’anatomie cornéenne.
Resumo:
Dans ce mémoire, on s'intéresse à l'action du groupe des transformations affines et des homothéties sur l'axe du temps des systèmes différentiels quadratiques à foyer faible d'ordre trois, dans le plan. Ces systèmes sont importants dans le cadre du seizième problème d'Hilbert. Le diagramme de bifurcation a été produit à l'aide de la forme normale de Li dans des travaux de Andronova [2] et Artès et Llibre [4], sans utiliser le plan projectif comme espace des paramètres ni de méthodes globales. Dans [7], Llibre et Schlomiuk ont utilisé le plan projectif comme espace des paramètres et des notions à caractère géométrique global (invariants affines et topologiques). Ce diagramme contient 18 portraits de phase et certains de ces portraits sont répétés dans des parties distinctes du diagramme. Ceci nous mène à poser la question suivante : existe-t-il des systèmes distincts, correspondant à des valeurs distinctes de paramètres, se trouvant sur la même orbite par rapport à l'action du groupe? Dans ce mémoire, on prouve un résultat original : l'action du groupe n'est pas triviale sur la forme de Li (théorème 3.1), ni sur la forme normale de Bautin (théorème 4.1). En utilisant le deuxième résultat, on construit l'espace topologique quotient des systèmes quadratiques à foyer faible d'ordre trois par rapport à l'action de ce groupe.
Resumo:
Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.
Resumo:
This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.
Resumo:
The so-called conformal affine Toda theory coupled to the matter fields (CATM), associated to the (s) over capl(2) affine Lie algebra, is studied. The conformal symmetry is fixed by setting a connection to zero, then one defines an off-critical model, the affine Toda model coupled to the matter (ATM). Using the dressing transformation method we construct the explicit forms of the two-soliton classical solutions, and show that a physical bound soliton-antisoliton pair (breather) does not exist. Moreover, we verify that these solutions share some features of the sine-Gordon (massive Thirring) solitons, and satisfy the classical equivalence of topological and Noether currents in the ATM model. We show, using bosonization techniques that the ATM theory decouples into a sine-Gordon model and a free scalar. Imposing the Noether and topological currents equivalence as a constraint, one can show that the ATM model leads to a bag model like mechanism for the confinement of the color charge inside the sine-Gordon solitons (baryons).
Resumo:
The solutions of a large class of hierarchies of zero-curvature equations that includes Toda- and KdV-type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras g. Their common feature is that they have some special vacuum solutions corresponding to Lax operators lying in some Abelian (up to the central term) subalgebra of g; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of g. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the Abelian and non-Abelian affine Toda theories are discussed in detail. © 1997 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images.
Resumo:
Extreme sports and extreme sports participants have been most commonly explored from a negative perspective, for example the “need to take unnecessary risks.” This study explored what can be learned from extreme sports about courage and humility - two positive psychology constructs. A phenomenological method was used via unstructured interviews with 15 extreme sports participants and other first hand accounts. The extreme sports included B.A.S.E. jumping, big wave surfing, extreme skiing, waterfall kayaking, extreme mountaineering and solo rope-free climbing. Results indicate that humility and courage can be deliberately sought out by participating in activities that involve a real chance of death, fear and the realisation that nature in its extreme is far greater and more powerful than humanity.
Resumo:
In late 2004, the concept of the creative industries arrived in China. It was warmly welcomed in Shanghai then subsequently adopted with some degree of caution in Beijing. In the years since, officials, scholars, practitioners, entrepreneurs and developers have exploited of the idea of creative industries, and a range of associated terms, to construct an alternative vision of an emerging China. In 2009, Li Wuwei, the Director of the Shanghai Creative Industries Association, himself a leading player in national political reform, released a book titled Creativity is Changing China (Chuangyi gaibian Zhongguo), subsequently translated as Creative Industries Are Changing China in English. The paper investigates the uptake of the creative industries in China and asks: can they really change China, or are they just rearranging the cultural landscape in some cities?
Resumo:
Applied Theatre is an umbrella term for a range of drama-based techniques, all of which align with a lineage of pedagogical theory and practice: (e.g.) Freire, Moreno, Heathcote. It encompasses methods and forms including Drama Education (O’Neill); Forum Theatre (Boal); and Process Drama (Haseman, O’Toole). Applied theatre often occurs in non-theatrical settings (schools, hospitals, prisons) with the aim of helping participants address issues of local concern. Increasingly, Applied Theatre practices are utilised in the corporate environment. Appied Theatre adopts artistic principles in production, but posits a practical utility beyond simple entertainment.
Resumo:
Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.