899 resultados para Transformada de Wavelet


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we presented an exhibition of the mathematical theory of orthogonal compact support wavelets in the context of multiresoluction analysis. These are particularly attractive wavelets because they lead to a stable and very efficient algorithm, that is Fast Transform Wavelet (FWT). One of our objectives is to develop efficient algorithms for calculating the coefficients wavelet (FWT) through the pyramid algorithm of Mallat and to discuss his connection with filters Banks. We also studied the concept of multiresoluction analysis, that is the context in that wavelets can be understood and built naturally, taking an important step in the change from the Mathematical universe (Continuous Domain) for the Universe of the representation (Discret Domain)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demand in electricity and decrease forecast, increasingly, of fossil fuel reserves, as well as increasing environmental concern in the use of these have generated a concern about the quality of electricity generation, making it well welcome new investments in generation through alternative, clean and renewable sources. Distributed generation is one of the main solutions for the independent and selfsufficient generating systems, such as the sugarcane industry. This sector has grown considerably, contributing expressively in the production of electricity to the distribution networks. Faced with this situation, one of the main objectives of this study is to propose the implementation of an algorithm to detect islanding disturbances in the electrical system, characterized by situations of under- or overvoltage. The algorithm should also commonly quantize the time that the system was operating in these conditions, to check the possible consequences that will be caused in the electric power system. In order to achieve this it used the technique of wavelet multiresolution analysis (AMR) for detecting the generated disorders. The data obtained can be processed so as to be used for a possible predictive maintenance in the protection equipment of electrical network, since they are prone to damage on prolonged operation under abnormal conditions of frequency and voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Fluxometria por Laser Doppler (LDF) é uma técnica não invasiva usada para medir o fluxo microvascular da pele humana. No fluxo é possível isolar componentes oscilatórias em gamas de frequências características que se encontram relacionadas com as actividades cardíaca, respiratória, miogénica, simpática e metabólica. A LDF permite assim estudar a fisiologia do fluxo sanguíneo. Neste trabalho foram realizadas medições de LDF nos tornozelos de 9 mulheres saudáveis numa situação de restrição à perfusão, usando uma braçadeira nos tornozelos. Os dados foram analisados com Transformada de Wavelet e Detrended Fluctuation Analysis (DFA) de modo a estudar os rácios das amplitudes das componentes de Wavelet e os respectivos expoentes . Estes parâmetros foram comparados nas situações de repouso, de restrição à perfusão e de recuperação após remoção da braçadeira. Observou-se que durante a restrição à perfusão houve um aumento significativo dos rácios de amplitude e dos expoentes a para as componentes cardíaca, respiratória e miogénica, o que pode reflectir vasoconstrição. Os parâmetros da componente metabólica apresentaram uma diminuição que se pode relacionar com variações na libertação de NO por parte do endotélio. Após a libertação da braçadeira, os parâmetros das componentes respiratória, miogénica e metabólica retornaram aos valores iniciais. Aanálise combinada de Wavelet com DFAoferece uma nova visão sobre a regulação do fluxo microvascular.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el presente trabajo de fin de máster se realiza una investigación sobre las técnicas de preproceso del dataset de entrenamiento y la aplicación de un modelo de predicción que realice una clasificación de dı́gitos escritos a mano. El conjunto de dataset de train y test son proporcionado en la competencia de Kaggle: Digit Recognizer y provienen de la base de datos de dı́gitos manuscritos MNIST. Por tratarse de imágenes las técnicas de preproceso se concentran en obtener una imagen lo más nı́tida posible y la reducción de tamaño de la misma, objetivos que se logran con técnicas de umbralización por el método de Otsu, transformada de Wavelet de Haar y el análisis de sus componentes principales. Se utiliza Deep Learning como modelo predictivo por ajustarse a este tipo de datos, se emplean además librerı́as de código abierto implementadas en el lenguaje estádisto R. Por último se obtiene una predicción con las técnicas y herramientas mencio- nadas para ser evaluada en la competencia de Kaggle, midiendo y comparando los resultados obtenidos con el resto de participantes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A filtragem de imagens visando a redução do ruído é uma tarefa muito importante em processamento de imagens, e encontra diversas aplicações. Para que a filtração seja eficiente, ela deve atenuar apenas o ruído na imagem, sem afetar estruturas importantes, como as bordas. Há na literatura uma grande variedade de técnicas propostas para filçtragem de imagens com preservação de bordas, com as mais variadas abordagens, deentrte as quais podem ser citadas a convolução com máscaras, modelos probabilísticos, redes neurais, minimização de funcionais e equações diferenciais parciais. A transformada wavelet é uma ferramenta matemática que permite a decomposição de sinais e imagens em múltiplas resoluções. Essa decomposição é chamada de representação em wavelets, e pode ser calculada atrravés de um algorítmo piramidal baseado em convoluções com filtros passa-bandas e passa-baixas. Com essa transformada, as bordas podem ser calculadas em múltiplas resoluções. Além disso, como filtros passa-baixas são utilizados na decomposição, a atenuação do ruído é um processo intrínseco à transformada. Várias técnicas baseadas na transformada wavelet têm sido propostas nos últimos anos, com resultados promissores. Essas técnicas exploram várias características da transformada wavelet, tais como a magnitude de coeficientes e sua evolução ao longo das escalas. Neste trabalho, essas características da transformada wavelet são exploradas para a obtenção de novas técnicas de filtragem com preservação das bordas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

o exame para o diagnóstico de doenças da laringe é usualmente realizado através da videolaringoscopia e videoestroboscopia. A maioria das doenças na laringe provoca mudanças na voz do paciente. Diversos índices têm sido propostos para avaliar quantitativamente a qualidade da voz. Também foram propostos vários métodos para classificação automática de patologias da laringe utilizando apenas a voz do paciente. Este trabalho apresenta a aplicação da Transformada Wavelet Packet e do algoritmo Best Basis [COI92] para a classificação automática de vozes em patológicas ou normais. Os resultados obtidos mostraram que é possível classificar a voz utilizando esta Transformada. Tem-se como principal conclusão que um classificador linear pode ser obtido ao se empregar a Transformada Wavelet Packet como extrator de características. O classificador é linear baseado na existência ou não de nós na decomposição da Transformada Wavelet Packet. A função Wavelet que apresentou os melhores resultados foi a sym1et5 e a melhor função custo foi a entropia. Este classificador linear separa vozes normais de vozes patológicas com um erro de classificação de 23,07% para falsos positivos e de 14,58%para falsos negativos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O processamento de imagens tem sido amplamente utilizado para duas tarefas. Uma delas é o realce de imagens para a posterior visualização e a outra tarefa é a extração de informações para análise de imagens. Este trabalho apresenta um estudo sobre duas teorias multi-escalas chamadas de espaço de escala e transformada wavelet, que são utilizadas para a extração de informações de imagens. Um dos aspectos do espaço de escalas que tem sido amplamente discutido por diversos autores é a sua base (originalmente a gaussiana). Tem se buscado saber se a base gaussiana é a melhor, ou para quais casos ela é a melhor. Além disto, os autores têm procurado desenvolver novas bases, com características diferentes das pertencentes à gaussiana. De posse destas novas bases, pode-se compará-las com a base gaussiana e verificar onde cada base apresenta melhor desempenho. Neste trabalho, foi usada (i) a teoria do espaço de escalas, (ii) a teoria da transformada wavelet e (iii) as relações entre elas, a fim de gerar um método para criar novas bases para o espaço de escalas a partir de funções wavelets. O espaço de escala é um caso particular da transformada wavelet quando se usam as derivadas da gaussiana para gerar os operadores do espaço de escala. É com base nesta característica que se propôs o novo método apresentado. Além disto, o método proposto usa a resposta em freqüência das funções analisadas. As funções bases do espaço de escala possuem resposta em freqüência do tipo passa baixas. As funções wavelets, por sua vez, possuem resposta do tipo passa faixas Para obter as funções bases a partir das wavelets faz-se a integração numérica destas funções até que sua resposta em freqüência seja do tipo passa baixas. Algumas das funções wavelets estudadas não possuem definição para o caso bi-dimensional, por isso foram estudadas três formas de gerar funções bi-dimensionais a partir de funções unidimensionais. Com o uso deste método foi possível gerar dez novas bases para o espaço de escala. Algumas dessas novas bases apresentaram comportamento semelhante ao apresentado pela base gaussiana, outras não. Para as funções que não apresentaram o comportamento esperado, quando usadas com as definições originais dos operadores do espaço de escala, foram propostas novas definições para tais operadores (detectores de borda e bolha). Também foram geradas duas aplicações com o espaço de escala, sendo elas um algoritmo para a segmentação de cavidades cardíacas e um algoritmo para segmentação e contagem de células sanguíneas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, spoke about the importance of image compression for the industry, it is known that processing and image storage is always a challenge in petrobrás to optimize the storage time and store a maximum number of images and data. We present an interactive system for processing and storing images in the wavelet domain and an interface for digital image processing. The proposal is based on the Peano function and wavelet transform in 1D. The storage system aims to optimize the computational space, both for storage and for transmission of images. Being necessary to the application of the Peano function to linearize the images and the 1D wavelet transform to decompose it. These applications allow you to extract relevant information for the storage of an image with a lower computational cost and with a very small margin of error when comparing the images, original and processed, ie, there is little loss of quality when applying the processing system presented . The results obtained from the information extracted from the images are displayed in a graphical interface. It is through the graphical user interface that the user uses the files to view and analyze the results of the programs directly on the computer screen without the worry of dealing with the source code. The graphical user interface, programs for image processing via Peano Function and Wavelet Transform 1D, were developed in Java language, allowing a direct exchange of information between them and the user

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electric energy is essential to the development of modern society and its increasing demand in recent years, effect from population and economic growth, becomes the companies more interested in the quality and continuity of supply, factors regulated by ANEEL (Agência Nacional de Energia Elétrica). These factors must be attended when a permanent fault occurs in the system, where the defect location that caused the power interruption should be identified quickly, which is not a simple assignment because the current systems complexity. An example of this occurs in multiple terminals transmission lines, which interconnect existing circuits to feed the demand. These transmission lines have been adopted as a feasible solution to suply loads of magnitudes that do not justify economically the construction of new substations. This paper presents a fault location algorithm for multiple terminals transmission lines - two and three terminals. The location method is based on the use of voltage and current fundamental phasors, as well as the representation of the line through its series impedance. The wavelet transform is an effective mathematical tool in signals analysis with discontinuities and, therefore, is used to synchronize voltage and current data. The Fourier transform is another tool used in this work for extract voltage and current fundamental phasors. Tests to validate the location algorithm applicability used data from faulty signals simulated in ATP (Alternative Transients Program) as well as real data obtained from oscillographic recorders installed on CHESF s lines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The power system stabilizers are used to suppress low-frequency electromechanical oscillations and improve the synchronous generator stability limits. This master thesis proposes a wavelet-based power system stabilizer, composed of a new methodology for extraction and compensation of electromechanical oscillations in electrical power systems based on the scaling coefficient energy of the maximal overlap discrete wavelet transform in order to reduce the effects of delay and attenuation of conventional power system stabilizers. Moreover, the wavelet coefficient energy is used for electric oscillation detection and triggering the power system stabilizer only in fault situations. The performance of the proposed power system stabilizer was assessed with experimental results and comparison with the conventional power system stabilizer. Furthermore, the effects of the mother wavelet were also evaluated in this work