949 resultados para Transferrin Receptors
Resumo:
When treated with heat-killed bacterial cells, mosquito cells in culture respond by up-regulating several proteins. Among these is a 66-kDa protein (p66) that is secreted from cells derived from both Aedes aegypti and Aedes albopictus. p66 was degraded by proteolysis and gave a virtually identical pattern of peptide products for each mosquito species. The sequence of one peptide (31 amino acids) was determined and found to have similarity to insect transferrins. By using conserved regions of insect transferrin sequences, degenerate oligonucleotide PCR primers were designed and used to isolate a cDNA clone encoding an A. aegypti transferrin. The encoded protein contained a signal sequence that, when cleaved, would yield a mature protein of 68 kDa. It contained the 31-amino acid peptide, and the 3′ end exactly matched a cDNA encoding a polypeptide that is up-regulated when A. aegypti encapsulates filarial worms [Beerntsen, B. T., Severson, D. W. & Christensen, B. M. (1994) Exp. Parasitol. 79, 312–321]. This transferrin, like those of two other insect species, has conserved iron-binding residues in the N-terminal lobe but not in the C-terminal lobe, which also has large deletions in the polypeptide chain, compared with transferrins with functional C-terminal lobes. The hypothesis is developed that this transferrin plays a role similar to vertebrate lactoferrin in sequestering iron from invading organisms and that degradation of the structure of the C-terminal lobe might be a mechanism for evading pathogens that elaborate transferrin receptors to tap sequestered iron.
Resumo:
The degeneration of nigral dopaminergic neurons in Parkinson disease is believed to be associated with oxidative stress. Since iron levels are increased in the substantia nigra of parkinsonian patients and this metal catalyzes the formation of free radicals, it may be involved in the mechanisms of nerve cell death. The cause of nigral iron increase is not understood. Iron acquisition by neurons may occur from iron-transferrin complexes with a direct interaction with specific membrane receptors, but recent results have shown a low density of transferrin receptors in the substantia nigra. To investigate whether neuronal death in Parkinson disease may be associated with changes in a pathway supplementary to that of transferrin, lactoferrin (lactotransferrin) receptor expression was studied in the mesencephalon. In this report we present evidence from immunohistochemical staining of postmortem human brain tissue that lactoferrin receptors are localized on neurons (perikarya, dendrites, axons), cerebral microvasculature, and, in some cases, glial cells. In parkinsonian patients, lactoferrin receptor immunoreactivity on neurons and microvessels was increased and more pronounced in those regions of the mesencephalon where the loss of dopaminergic neurons is severe. Moreover, in the substantia nigra, the intensity of immunoreactivity on neurons and microvessels was higher for patients with higher nigral dopaminergic loss. These data suggest that lactoferrin receptors on vulnerable neurons may increase intraneuronal iron levels and contribute to the degeneration of nigral dopaminergic neurons in Parkinson disease.
Resumo:
OBJECTIVE: To determine the effects of maternal diabetes on fetal iron status using serum transferrin receptors (STfR) and their ratio to ferritin (TfR-F index) in cord blood. METHODS: Iron, ferritin, erythropoietin, STfR and haemoglobin concentration were measured and TfR-F index calculated in 97 maternal/cord blood pairs. Forty-nine women had type 1 diabetes (diagnosed before pregnancy) and these were compared with forty-eight non- diabetic controls. The women with type 1 diabetes were recruited consecutively from attendance at the joint antenatal endocrine clinic while the control group of women was recruited from consecutive attendance at the remaining antenatal clinics. RESULTS: The infants of the diabetic women had significantly lower levels of ferritin (47 vs 169 mug/l; p
Resumo:
The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-β-cyclodextrin (MβCD) to selectively extract cholesterol from the plasma membrane. MβCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MβCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MβCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MβCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.
Resumo:
Differentiating 3T3-L1 cells exhibit a dramatic increase in the rate of insulin-stimulated glucose transport during their conversion from proliferating fibroblasts to nonproliferating adipocytes. On day 3 of 3T3-L1 cell differentiation, basal glucose transport and cell surface transferrin binding are markedly diminished. This occurs concomitant with the formation of a distinct insulin-responsive vesicular pool of intracellular glucose transporter 1 (GLUT1) and transferrin receptors as assessed by sucrose velocity gradients. The intracellular distribution of the insulin-responsive aminopeptidase is first readily detectable on day 3, and its gradient profile and response to insulin at this time are identical to that of GLUT1. With further time of differentiation, GLUT4 is expressed and targeted to the same insulin-responsive vesicles as the other three proteins. Our data are consistent with the notion that a distinct insulin-sensitive vesicular cargo compartment forms early during fat call differentiation and its formation precedes GLUT4 expression. The development of this compartment may result from the differentiation-dependent inhibition of constitutive GLUT1 and transferrin receptor trafficking such that there is a large increase in, or the new formation of, a population of postendosomal, insulin-responsive vesicles.
Resumo:
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.
Resumo:
Hammerhead ribozymes are potent RNA molecules which have the potential to specifically inhibit gene expression by catalysing the trans-cleavage of mRNAs. However, they are unstable in biological fluids and cellular delivery poses a problem. Site-specific chemical modification of hammerhead ribozymes was evaluated as a means of enhancing biological stability. Chimeric, 2'-O-methylated ribozymes, containing only five unmodified ribonucleotides, were catalytically active in vitro (kcat = 1.46 min-1) and were significantly more stable in serum and lysosomal enzymes than unmodified (all-RNA) counterparts. Furthermore, they remained undegraded in cell-containing media for up to 8 hours. Stability enhancement allowed cellular uptake properties of radiolabelled ribozymes to be assessed following exogenous delivery. Studies in vulval and glial cell lines indicated that chimeric ribozymes became cell-associated via an inefficient process, which was energy and concentration dependant. A considerable proportion of ribozymes remained bound to cell-surface components, however, a small proportion (<1%) were internalised via mechanisms of adsorptive and / or receptor mediated endocytosis. Fluorescent microscopy indicated that ribozymes were localised within endosomal / lysosomal vesicles following cell entry. This was confirmed by immuno-electron microscopy, which allowed the detection of biotin-labelled ribozymes within the cell ultrastructure. Despite the predominant localisation within endocytic vesicles, a small proportion of internalised ribozymes appeared able to exit these compartments and penetrate target sites within the nucleus and cytoplasm. The ribozymes designed in this report were directed against the epidermal growth factor receptor mRNA, which is over-expressed in a malignant brain disease called glioblastoma multiforme. In order to examine the fate of ribozymes in the brain, the distribution of FITC-labelled ribozymes was examined following intra-cerebro ventricular injection to mice. FITC-ribozymes demonstrated high punctate pattern of distribution within the striatum and cortex, which appeared to represent localisation within cell bodies and dendritic processes. This suggested that delivery to glial cells in vivo may be possible. Finally, strategies were investigated to enhance the cellular delivery of ribozymes. Conjugation of ribozymes to anti~transferrin receptor antibodies improved cellular uptake 3-fold as a result of a specific interaction with transferrin receptors. Complexation with cationic liposomes also significantly improved cell association, however, some toxiclty was observed and this could be a limitation to their use. Overall, it would appear that hammerhead ribozymes can be chemically stabilised to allow direct exogenous administration in vivo. However, additional delivery strategies are probably required to improve cellular uptake, and thus, allow ribozymes to achieve their full potential as pharmaceutical agents. KEYWORDS: Catalytic
Resumo:
Recently, we identified a GTPase-activating protein for the ADP ribosylation factor family of small GTP-binding proteins that we call GIT1. This protein initially was identified as an interacting partner for the G protein-coupled receptor kinases, and its overexpression was found to affect signaling and internalization of the prototypical beta(2)-adrenergic receptor. Here, we report that GIT1 overexpression regulates internalization of numerous, but not all, G protein-coupled receptors. The specificity of the GIT1 effect is not related to the type of G protein to which a receptor couples, but rather to the endocytic route it uses. GIT1 only affects the function of G protein-coupled receptors that are internalized through the clathrin-coated pit pathway in a beta-arrestin- and dynamin-sensitive manner. Furthermore, the GIT1 effect is not limited to G protein-coupled receptors because overexpression of this protein also affects internalization of the epidermal growth factor receptor. However, constitutive agonist-independent internalization is not regulated by GIT1, because transferrin uptake is not affected by GIT1 overexpression. Thus, GIT1 is a protein involved in regulating the function of signaling receptors internalized through the clathrin pathway and can be used as a diagnostic tool for defining the endocytic pathway of a receptor.
Resumo:
A method employing isotopically- and photoaffinity-labeled probes and polyclonal and monoclonal antibody to the probes for the identification, isolation and recovery of protein receptors is described. Antibody was raised against N-(3-(p-azido-m-($\sp{125}$I) -iodophenyl)) propionate (AIPP) coupled to and photolyzed to BSA. The antibodies specifically bound AIPP-derivatized proteins. An isolation system was developed utilizing this probe and two antigenically identical reversible analogues. N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl)propionyl)amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) reacts with primary amines and N-(((3-p-azido-m-($\sp{125}$I) -iodophenyl)propionyl)amidoethyl)dithiopyridine ($\sp{125}$I-AIPP-PDA) reacts with reduced thiols. The applicability of the system was established by derivatizing known ligands (Transferrin and Interferon-alpha) with one of the probes. The ligand-probe was then allowed to interact with its receptor by incubation with SS5 lymphoma cells and cross-linked by photolysis at 300 nm. The photolyzed ligand/probe/receptor preparation was then recovered with AIPP antibody. Utilization of N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl-propionyl)-amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) allowed the components of the photolyzed complex to be separated by treatment with 2-mercaptoethanol in the SDS-PAGE solubilization buffer. Ligand and receptor labeling were then assessed by Coomassie staining and autoradiography. Results of receptor assays suggest that $\sp{125}$I-AIPP was, indeed, transferred to moieties that represent the receptors for both Transferrin and Interferon-alpha. ^
Resumo:
Insulin-like growth factor binding proteins (IGFBPs) are prime regulators of IGF-action in numerous cell types including the retinal pigment epithelium (RPE). The RPE performs several functions essential for vision, including growth factor secretion and waste removal via a phagocytic process mediated in part by vitronectin (Vn). In the course of studying the effects of IGFBPs on IGF-mediated VEGF secretion and Vn-mediated phagocytosis in the RPE cell line ARPE-19, we have discovered that these cells avidly ingest synthetic microspheres (2.0 μm diameter) coated with IGFBPs. Given the novelty of this finding and the established role for endocytosis in mediating IGFBP actions in other cell types, we have explored the potential role of candidate cell surface receptors. Moreover, we have examined the role of key IGFBP structural motifs, by comparing responses to three members of the IGFBP family (IGFBP-3, IGFBP-4 and IGFBP-5) which display overlapping variations in primary structure and glycosylation status. Coating of microspheres (FluoSpheres®, sulfate modified polystyrene filled with a fluorophore) was conducted at 37 °C for 1 h using 20 μg/mL of test protein, followed by extensive washing. Binding of proteins was confirmed using a microBCA assay. The negative control consisted of microspheres treated with 0.1% bovine serum albumin (BSA), and all test samples were post-treated with BSA in an effort to coat any remaining free protein binding sites, which might otherwise encourage non-specific interactions with the cell surface. Serum-starved cultures of ARPE-19 cells were incubated with microspheres for 24 h, using a ratio of approximately 100 microspheres per cell. Uptake of microspheres was quantified using a fluorometer and was confirmed visually by confocal fluorescence microscopy. The ARPE-19 cells displayed little affinity for BSA-treated microspheres, but avidly ingested large quantities of those pre-treated with Vn (ANOVA; p < 0.001). Strong responses were also observed towards recombinant formulations of non-glycosylated IGFBP-3, glycosylated IGFBP-3 and glycosylated IGFBP-5 (all p < 0.001), while glycosylated IGFBP-4 induced a relatively minor response (p < 0.05). The response to IGFBP-3 was unaffected in the presence of excess soluble IGFBP-3, IGF-I or Vn. Likewise, soluble IGFBP-3 did not induce uptake of BSA-treated microspheres. Antibodies to either the transferrin receptor or type 1 IGF-receptor displayed slight inhibitory effects on responses to IGFBPs and Vn. Heparin abolished responses to Vn, IGFBP-5 and non-glycosylated IGFBP-3, but only partially inhibited the response to glycosylated IGFBP-3. Our results demonstrate for the first time IGFBP-mediated endocytosis in ARPE-19 cells and suggest roles for the IGFBP-heparin-binding domain and glycosylation status. These findings have important implications for understanding the mechanisms of IGFBP actions on the RPE, and in particular suggest a role for IGFBP-endocytosis.
Resumo:
ROLE OF LOW AFFINITY β1-ADRENERGIC RECEPTOR IN NORMAL AND DISEASED HEARTS Background: The β1-adrenergic receptor (AR) has at least two binding sites, 1HAR and 1LAR (high and low affinity site of the 1AR respectively) which cause cardiostimulation. Some β-blockers, for example (-)-pindolol and (-)-CGP 12177 can activate β1LAR at higher concentrations than those required to block β1HAR. While β1HAR can be blocked by all clinically used β-blockers, β1LAR is relatively resistant to blockade. Thus, chronic β1LAR activation may occur in the setting of β-blocker therapy, thereby mediating persistent βAR signaling. Thus, it is important to determine the potential significance of β1LAR in vivo, particularly in disease settings. Method and result: C57Bl/6 male mice were used. Chronic (4 weeks) β1LAR activation was achieved by treatment with (-)-CGP12177 via osmotic minipump. Cardiac function was assessed by echocardiography and catheterization. (-)-CGP12177 treatment in healthy mice increased heart rate and left ventricular (LV) contractility without detectable LV remodelling or hypertrophy. In mice subjected to an 8-week period of aorta banding, (-)-CGP12177 treatment given during 4-8 weeks led to a positive inotropic effect. (-)-CGP12177 treatment exacerbated LV remodelling indicated by a worsening of LV hypertrophy by ??% (estimated by weight, wall thickness, cardiomyocyte size) and interstitial/perivascular fibrosis (by histology). Importantly, (-)-CGP12177 treatment to aorta banded mice exacerbated cardiac expression of hypertrophic, fibrogenic and inflammatory genes (all p<0.05 vs. non-treated control with aorta banding).. Conclusion: β1LAR activation provides functional support to the heart, in both normal and diseased (pressure overload) settings. Sustained β1LAR activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. Word count: 270
Resumo:
The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.