986 resultados para Transfer Radical Polymerization
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 °C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 °C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (Mp), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 degrees C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 degrees C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (M-p), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We have used neutron reflectometry to characterize the swelling behaviour of brushes of poly[2-(diethyl amino)ethyl methacrylate], a polybase, as a function of pH. The brushes, synthesized by the "grafting from" method of atom transfer radical polymerization, were observed to approximately double their thickness in low pH solutions, although the pK is shifted to a lower pH than in dilute solution. The composition-depth profile obtained from the reflectometry experiments for the swollen brushes reveals a region depleted in polymer between the substrate and the extended part of the brush.
Resumo:
The synthesis of cyclic polystyrene (Pst) with an alkoxyamine functionality has been accomplished by intramolecular radical coupling in the presence of a nitroso radical trap Linear alpha,omega-dibrominated polystyrene, produced by the atom transfer radical polymerization (ATRP) of styrene using a dibrominated initiator, was subjected to chain-end activation via the atom transfer radical coupling (ATRC) process under pseudodilute conditions in the presence of 2-methyl-2-nitrosopropane (MNP). This radical trap-assisted, intramolecular ATRC (RTA-ATRC) produced cyclic polymers in greater than 90% yields possessing < G > values in the 0.8-0.9 range as determined by gel permeation chromatography (GPC). Thermal-induced opening of the cycles, made possible by the incorporated alkoxyamine, resulted in a return to the original apparent molecular weight, further supporting the formation of cyclic polymers in the RTA-ATRC reaction. Liquid chromatography-mass spectrometry (LC-MS) provided direct confirmation of the cyclic architecture and the incorporation of the nitroso group into the macrocycle RTA-ATRC cyclizations carried out with faster rates of polymer addition into the redox active solution and/or in the presence of a much larger excess of MNP (up to a 250:1 ratio of MNP:C-Br chain end) still yielded cyclic polymers that contained alkoxyamine functionality.
Selective Formation of Diblock Copolymers Using Radical Trap-Assisted Atom Transfer Radical Coupling
Resumo:
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 °C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different KATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 °C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619–3626
Selective Formation of Diblock Copolymers Using Radical Trap-Assisted Atom Transfer Radical Coupling
Resumo:
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 degrees C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different K-ATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 degrees C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619-3626
Resumo:
A method for the production of macrocyclic polystyrene via ring closing of a linear !,"-dibrominated polystyrene by an Atom Transfer Radical Coupling (ATRC) reaction is described. The dibrominated polystyrene chain was produced from two simultaneous atom transfer radical polymerizations (ATRPs) originating from a dibrominated benzal bromide initiator. To ensure the retention of the halogen end groups polymerization was allowed to proceed to less than 50% conversion. Using this precursor in an intramolecular ATRC (ring closing) reaction was found to yield in excess of 90% cyclic product based on refractive index-gel permeation chromatography (GPC) analysis. The cyclic architecture of the polymer was verified by GPC, Nuclear Magnetic Resonance (NMR), and mass spectrometry analysis. The utility of this method has been expanded by the addition of 2-methyl-2-nitrosopropane to the coupling reaction, which allows for the coupling to proceed at a faster rate and to yield macrocycles with incorporated alkoxyamine functionality. The alkoxyamine functionality allows for degradation of the cycles at high temperatures (>125° C) and we hypothesize that it may allow the macrocycles to act as a macroinitiator for a ring expansion polymerization in future studies.
Resumo:
The atom transfer radical polymerization (ATRP) of styrene (St) was conducted in the presence of varying equivalence (eq) of hexafluorobenzene (HFB) and octafluorotoluene (OFT) to probe the effects of pi-pi stacking on the rate of the polymerization and on the tacticity of the resulting polystyrene (PSt). The extent of the pi-pi stacking interaction between HFB/OFT and the terminal polystyrenic phenyl group was also investigated as a function of solvent, both non-aromatic solvents (THF and hexanes) and aromatic solvents (benzene and toluene). In all cases the presence of HFB or OFT resulted in a decrease in monomer conversion indicating a reduction in the rate of the polymerization with greater retardation of the rate with increase eq of HFB or OFT (0.5 eq to 1 eq HFB/OFT compared to St). Additionally, when aromatic solvents were used instead of non-aromatic solvents the effect of the HFB/OFT on the rate was minimized, consistent with the aromatic solvent competitively interacting with the HFB/OFT. The effects of temperature and ligand strength on the ATRP of St in the presence of HFB were also probed. It was found that when using N,N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) as the ligand the effects of HFB at 38o were the same as at 86oC. When tris[2-(dimethylamino)ethyl]-amine (Me6TREN) was used as the ligand at 38o there was a decrease in monomer conversion similar to the analogous PMDETA reaction. When the polymerization was conducted at 86oC there was no effect on the monomer conversion with HFB present compared to when HFB was absent. To investigate the pi-pi stacking effect even further, the reverse pi-pi stacking system was observed by conducting the ATRP of pentafluorostyrene (PFSt) in the presence of varying eq of benzene and toluene, which in both cases resulted in an increase in monomer conversion compared to when benzene or toluene were absent; in summary the rate of the ATRP of PFSt increases when benzene or toluene waas present in the reaction. The pi-pi stacking interaction between the HFB/OFT and the dormant alkyl bromide of the polymer chain was verified by 1H-NMR with 1-bromoethylbenzene as the alkyl bromide. Also verified by 1H-NMR was the interaction between HFB/OFT and St and the interaction between PFSt and benzene. In all 1H-NMR spectra a perturbation in the aromatic and/or vinyl peaks was observed when the pi-pi stacking agent was present compared to when it was absent. The tacticity of the PSt formed in the presence of 1 eq of HFB was compared to the PSt formed in the absence of HFB by observing the C1 signal in their 13C-NMR spectra, but no change in shape or chemical shift of the signal was observed indicating that there was no change in tacticity.
Resumo:
End-brominated poly(methyl methacrylate) (PMMABr) was prepared by atom transfer radical polymerization (ATRP) and employed in a series of atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRG) reactions. When coupling reactions were performed in the absence of a nitroso radical trap-traditional ATRC condition-very little coupling of the PMMA chains was observed, consistent with disproportionation as the major termination pathway for two PMMA chain-end radicals in our reactions. When 2-methyl-2-nitrosopropane (MNP) was used as the radical trap, coupling of the PMMA chains in this attempted RTA-ATRC reaction was again unsuccessful, owing to capping of the PMMA chains with a bulky nitroxide and preventing further coupling. Analogous reactions performed using nitrosobenzene (NBz) as the radical trap showed significant dimerization, as observed by gel permeation chromatography (GPC) by a shift in the apparent molecular weight compared to the PMMABr precursors. The extent of coupling was found to depend on the concentrion of NBz compared to the PMMABr chain ends, as well as the temperature and time of the coupling reaction. To a lesser extent, the concentrations of copper(I) bromide (CuBr), nitrogen ligand (N,N,N',N',N"-pentamethyldiethylenetriamine = PMDETA), and elemental copper (Cu) were also found to play a role in the success of the RTA-ATRC reaction. The highest levels of dimerization were observed when the coupling reaction was carried out at 80 degrees C for 0.5h, with ratio of 1:4:2.5:8:1 equiv of NBz: CuBr:Cu:PMDETA:PMMABr.
Resumo:
Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Quando um líquido evita a cristalização durante o arrefecimento, diz-se que entra no estado sobrearrefecido. Se a temperatura continuar a diminuir, o consequente aumento da viscosidade reflecte-se na mobilidade molecular de tal maneira que os tempos característicos se tornam da mesma ordem de grandeza que os tempos acessíveis experimentalmente. Se o arrefecimento continuar, o líquido altamente viscoso acaba por vitrificar, i.e. entra no estado vítreo onde apenas os movimentos locais são permitidos. Os monómeros da família n -etileno glicol dimetacrilato ( n -EGDMA, para n = 1 até 4, que constituem o objecto deste estudo, facilmente evitam a cristalização, sendo pois bons candidatos para estudar a mobilidade molecular nos estados sobrearrefecido e vítreo. A Espectroscopia de Relaxação Dieléctrica (DRS) foi a técnica escolhida para obter informação detalhada sobre a sua dinâmica molecular (Capítulos 1 e 2). A primeira parte deste trabalho consistiu na caracterização dieléctrica dos processos de relaxação existentes acima e abaixo da temperatura de transição vítrea (g T ), a qual aumenta com o aumento do peso molecular (w M ), sendo este resultado confirmado por Calorimetria Diferencial de Varrimento (DSC). No que respeita ao processo cooperativo a , associado à transição vítrea, e ao processo secundário b, observa-se uma dependência com w M , enquanto que o outro processo secundário, g , aparenta ser independente deste factor (Capítulo 3). Nos capítulos seguintes, foram levadas a cabo diferentes estratégias com o objectivo de clarificar os mecanismos que estão na origem destas duas relaxações secundárias (b e g ), assim como conhecer a sua respectiva relação com a relaxação principal (a ). Do estudo, em tempo real, da polimerização isotérmica via radicais livres do TrEGDMA por Calorimetria de Varrimento Diferencial com Modulação de Temperatura (TMDSC), levado a cabo a temperaturas abaixo da g T do polímero final, concluem-se entre outros, dois importantes aspectos: i) que a vitrificação do polímero em formação conduz a graus de conversão relativamente baixos, e ii) que o monómero que está por reagir é expulso da rede polimérica que se forma, dando lugar a uma clara separação de fases (Capítulo 4). Com base nesta informação, o passo seguinte foi estudar separadamente a polimerização isotérmica do di-, tri- e tetra-EGDMA, dando especial atenção às alterações de mobilidade do monómero ainda por reagir. Com as restrições impostas pela formação de ligações químicas, as relaxações a e b detectadas no monómero tendem a desaparecer no novo polímero formado, enquanto que a relaxação g se mantém quase inalterada. Os diferentes comportamentos que aparecem durante a polimerização permitiram a atribuição da origem molecular dos processos secundários: o processo g foi associado ao movimento twisting das unidades etileno glicol, enquanto que a rotação dos grupos carboxilo foi relacionada com a relaxação b (Capítulo 5). No que respeita ao próprio polímero, um processo de relaxação adicional foi detectado, pol b , no poly-DEGDMA, poly-TrEGDMA e poly-TeEGDMA, com características similares ao encontrado nos poli(metacrilato de n -alquilo). Este processo foi confirmado e bem caracterizado aquando do estudo da copolimerização do TrEGDMA com acrilato de metilo (MA) para diferentes composições (Capítulo 6). Para finalizar, o EGDMA, o elemento mais pequeno da família de monómeros estudada, além de vitrificar apresenta uma marcada tendência para cristalizar quer a partir do estado líquido ou do estado vítreo. Durante a cristalização, a formação de uma fase rígida afecta principalmente o processo a , cuja intensidade diminui sem no entanto se observarem modificações significativas na dependência do tempo de relaxação característico com a temperatura. Por outro lado, o processo secundário b torna-se melhor definido e mais estreito, o que pode ser interpretado em termos de uma maior homogeneidade dos micro-ambientes associados aos movimentos locais(Capítulo 7).
Resumo:
Les brosses de polyélectrolytes font l’objet d’une attention particulière pour de nombreuses applications car elles présentent la capacité de changer de conformation et, par conséquent, de propriétés de surface en réponse aux conditions environnementales appliquées. Le contrôle des principaux paramètres de ces brosses telles que l'épaisseur, la composition et l'architecture macromoléculaire, est essentiel pour obtenir des polymères greffés bien définis. Ceci est possible avec la Polymérisation Radicalaire par Transfert d’Atomes - Initiée à partir de la Surface (PRTA-IS), qui permet la synthèse de brosses polymériques de manière contrôlée à partir d’une couche d'amorceurs immobilisés de manière covalente sur une surface. Le premier exemple d’une synthèse directe de brosses de poly(acide acrylique) (PAA) par polymérisation radicalaire dans l’eau a été démontré. Par greffage d’un marqueur fluorescent aux brosses de PAA et via l’utilisation de la microscopie de fluorescence par réflexion totale interne, le dégreffage du PAA en temps réel a pu être investigué. Des conditions environnementales de pH ≥ 9,5 en présence de sel, se sont avérées critiques pour la stabilité de la liaison substrat-amorceur, conduisant au dégreffage du polymère. Afin de protéger de l’hydrolyse cette liaison substrat-amorceur sensible et prévenir le dégreffage non souhaité du polymère, un espaceur hydrophobique de polystyrène (PS) a été inséré entre l'amorceur et le bloc de PAA stimuli-répondant. Les brosses de PS-PAA obtenues étaient stables pour des conditions extrêmes de pH et de force ionique. La réponse de ces brosses de copolymère bloc a été étudiée in situ par ellipsométrie, et le changement réversible de conformation collapsée à étirée, induit par les variations de pH a été démontré. De plus, des différences de conformation provenant des interactions du bloc de PAA avec des ions métalliques de valence variable ont été obtenues. Le copolymère bloc étudié semble donc prometteur pour la conception de matériaux répondant rapidement a divers stimuli. Par la suite, il a été démontré qu’un acide phosphonique pouvait être employé en tant qu’ amorceur PRTA-IS comme alternative aux organosilanes. Cet amorceur phosphonate a été greffé pour la première fois avec succès sur des substrats de silice et une PRTA-IS en milieux aqueux a permis la synthèse de brosses de PAA et de poly(sulfopropyl méthacrylate). La résistance accrue à l’hydrolyse de la liaison Sisubstrat-O- Pamorceur a été confirmée pour une large gamme de pH 7,5 à 10,5 et a permis l’étude des propriétés de friction des brosses de PAA sous différentes conditions expérimentales par mesure de forces de surface. Malgré la stabilité des brosses de PAA à haute charge appliquée, les études des propriétés de friction ne révèlent pas de changement significatif du coefficient de friction en fonction du pH et de la force ionique.