932 resultados para Transdermal Penetration, Steroids
Resumo:
The skin localization of steroids following topical application is largely unknown. We determined the distribution of five steroids in human skin using excised epidermal, dermal, and full-thickness membranes in vitro. There was no significant difference in steroid maximum flux through epidermal and full-thickness membranes, other than significantly lower fluxes for the most polar steroid, aldosterone. Hydrocortisone had the highest dermal diffusivity and dermal penetration, and the accumulation of hydrocortisone and corticosterone was higher than that of the other steroids. Slower penetration and higher accumulation in the viable epidermis of progesterone in full-thickness skin were consistent with dermal penetration limitation effects associated with high lipophilicity. Copyright (c) 2006 S. Karger AG, Basel
Resumo:
The underlying theme of this thesis is one of exploring the processes involved in the enhancement of percutaneous absorption. The development of an attenuated total reflectance Fourier-Transform infrared (ATR-FTIR) spectroscopic method to analyse diffusion of suitable topically applied compounds in membrane is described. Diffusion coefficients (D/h2) and membrane solubility (AO) for topically applied compounds were determined using a solution to Fick's second law of diffusion. This method was employed to determine the diffusional characteristics of a model permeant, 4-cyanophenol (CP), across silicone membrane as a function of formulation applied and permeant physicochemical properties. The formulations applied were able to either affect CP diffusivity and/or its membrane solubility in the membrane; such parameters partially correlated with permeant physicochemical properties in each formulation. The interplay during the diffusion process between drug, enhancer and vehicle in stratum corneum (SC) was examined. When enhancers were added to the applied formulations, CP diffusivity and solubility were significantly enhanced when compared to the neat propylene glycol (PG) application. Enhancers did not affect PG diffusivity in SC but enhancers did affect PG solubility in SC. PG diffusion closely resembled that of CP, implying that the respective transport processes were inter-related. Additionally, a synergistic effect, which increases CP diffusivity and membrane solubility in SC, was found to occur between PG and water. Using 12-azidooleic acid (AOA) as an IR active probe for oleic acid, the simultaneous penetration of CP, AOA and PG into human stratum corneum was determined. It was found that the diffusion profiles for all three permeants were similar. This indicated that the diffusion of each species through SC was closely related and most likely occurred via the same route or SC microenvironment.
Resumo:
The effects of three vehicles, phosphate-buffered saline (PBS), ethanol (50% in PBS w/w) and propylene glycol (50% in PBS w/w) on in vitro transdermal penetration of testosterone was investigated in the horse. Skin was harvested from the thorax of five Thoroughbred horses after euthanasia and stored at -20 degrees C until required. The skin was then defrosted and placed into Franz-type diffusion cells, which were maintained at approximately 32 degrees C by a water bath. Saturated solutions of testosterone, containing trace amounts of radiolabelled [C-14]testosterone, in each vehicle were applied to the outer (stratum corneum) surface of each skin sample and aliquots of receptor fluid were collected at 0, 2, 4, 8, 16, 20, 22 and 24 h and analysed for testosterone by scintillation counting. The maximum flux (J(max)) of testosterone was significantly higher for all sites when testosterone was dissolved in a vehicle containing 50% ethanol or 50% propylene glycol, compared to PBS. In contrast, higher residues of testosterone were found remaining within the skin when PBS was used as a vehicle. This study shows that variability in clinical response to testosterone could be expected with formulation design.
Resumo:
Objective-To determine the effects of various vehicles on the penetration and retention of hydrocortisone applied to canine skin. Sample Population-20 canine skin samples obtained from the thorax, neck, and groin regions of 5 Greyhounds. Procedure-Skin was harvested from dogs after euthanasia and stored at -20 degrees C until required. The skin was then defrosted and placed into diffusion cells, which were maintained at approximately 32 degrees C by a water bath. Saturated solutions of hydrocortisone that contained trace amounts of radiolabelled [C-14]-hydrocortisone in each vehicle (ie, PBS solution [PBSS] alone, 50% ethanol [EtOH] in PBSS [wt/wt], and 50% propylene glycol in PBSS [wt/wt]) were applied to the outer (stratum corneum) surface of each skin sample, and aliquots of receptor fluid were collected for 24 hours and analyzed for hydrocortisone. Results-The maximum flux of hydrocortisone was significantly higher for all sites when dissolved in a vehicle containing 50% EtOH, compared with PBSS alone or 50% propylene glycol, with differences more prominent in skin from the neck region. In contrast, higher residues of hydrocortisone were found remaining within the skin when PBSS alone was used as a vehicle, particularly in skin from the thorax and neck. Conclusions and Clinical Relevance-Penetration of topically applied hydrocortisone is enhanced when EtOH is used in vehicle formulation. Significant regional differences (ie, among the thorax, neck, and groin areas) are also found in the transdermal penetration and skin retention of hydrocortisone. Variability in clinical response to hydrocortisone can be expected in relation to formulation design and site of application.
Resumo:
Little is known about the transdermal penetration of hydrocortisone in the horse and, although commercial formulations containing hydrocortisone are registered for topical use in the horse, there have been no studies investigating the movement of this glucocorticoid through different regions of equine skin. Skin was harvested from the thorax, groin and leg (dorsal metacarpal) regions of five Thoroughbred geldings and frozen (-20 degrees C) until required. Defrosted skin was placed in Franz-type diffusion cells and the amount of radiolabelled (H-3) hydrocortisone, in a saturated solution of unlabelled hydrocortisone in 50% ethanol (w/w), which penetrated through and remained within skin samples was measured over 24 h. Significantly higher (P < 0.001) maximum flux (J(max); mol/cm(2)/h) was measured when hydrocortisone was applied to skin from the leg, compared to thorax and groin, although significantly less hydrocortisone (P < 0.001) was retained within skin from the leg at 24 h. Topical application of hydrocortisone in a vehicle containing ethanol would penetrate faster through leg skin from the lower leg when compared with the thorax or groin, which depending on cutaneous blood flow, may result in higher systemic drug concentrations or greater efficiency in treating local inflamed tissue.
Resumo:
The effects of the vehicles phosphate-buffered saline (PBS), ethanol (EtOH; 50% in PBS w/w) and propylene glycol (PG; 50% in PBS w/w) and the region of administration on in vitro transdermal penetration of testosterone was investigated in the dog. Skin was harvested from the thorax, neck (dorsal part) and groin regions of greyhounds after euthanasia and stored at -20 degrees C until required. The skin was then de-frosted and placed into Franz-type diffusion cells which were maintained at approximately 32 degrees C by a water-bath. Saturated solutions of testosterone, containing trace amounts of radiolabelled (C-14) testosterone, in each vehicle were applied to the outer (stratum corneum) surface of each skin sample and aliquots of receptor fluid were collected at 0, 2, 4, 8, 16, 20, 22 and 24 h and analysed for testosterone by scintillation counting. The maximum flux (J(max)) of testosterone was significantly higher for all sites when dissolved in a vehicle containing 50% EtOH or 50% PG, compared to PBS. In contrast, higher residues of testosterone were found remaining within the skin when PBS was used as a vehicle. This study shows that variability in percutaneous penetration of testosterone could be expected with formulation design and site of application. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the plasma concentration of diclofenac sodium (DS) in dogs submitted to diclofenaco phonophoresis and to evaluate if phonophoresis induces greater absorption of this drug in dogs. Five dogs were used in eight different groups at different times: One group received oral administration of 40mg of DS per dog and seven groups received topical application of emulgel DS. The topical application area was 20cm(2). A continuous ultrasound frequency of 1MHz and intensity of 0.4W cm(-2) was used. Blood collections were performed before the treatment (T0), and 1h (T1) and 4h (T2) after ultrasound application for all groups. DS concentrations in plasma were measured by high performance liquid choramatohraphy (HPLC). There was significant increase of DS plasma concentration only at T1 in the oral administration group. It was not possible to detect any concentration of DS in the plasma of dogs after topical application of DS, even after DS phonophoresis. The facilitation of transdermal penetration by ultrasound has not been verified under the protocol specified in this research.
Resumo:
One of the most important determinants of dermatological and systemic penetration after topical application is the delivery or flux of solutes into or through the skin. The maximum dose of solute able to be delivered over a given period of time and area of application is defined by its maximum flux (J(max), mol per cm(2) per h) from a given vehicle. In this work, J(max) values from aqueous solution across human skin were acquired or estimated from experimental data and correlated with solute physicochemical properties. Whereas epidermal permeability coefficients (k(p)) are optimally correlated to solute octanol-water partition coefficient (K-ow) and molecular weight (MW) was found to be the dominant determinant of J(max) for this literature data set: log J(max)=-3.90-0.0190MW (n=87, r(2)=0.847, p
Resumo:
An increasing number of formulations are applied to equine skin, yet variable penetration can affect efficacy, or the incidence of adverse effects, or both. To investigate the effects of common methods of skin preparation on transdermal drug penetration in vitro, we clipped, harvested, and froze skin samples from 5 Thoroughbred geldings. Thawed samples were prepared as follows: control (no preparation); cleaned with aqueous chlorhexidine (Aq-C, 0.1% w/v); cleaned with alcoholic chlorhexidine (Al-C, 0.5% w/v); shaved (Sh); or tape-stripped (Ta) with the use of adhesive tape. The samples were then placed in diffusion cells, and 2 g of methylsalicylate (MeSa) gel (Dencorub) was applied to the stratum corneum side. The penetration of MeSa and its analyte, salicylate (Sa), through the skin samples was measured over 10 h. Compared with control skin, significantly more MeSa penetrated through skin prepared with Al-C or Sh (P < 0.01) or with Aq-C or Ta (P < 0.05), and significantly more Sa was recovered in the receptor phase from skin prepared with Aq-C, Al-C, or Sh (P < 0.05) or with Ta (P < 0.01). A significantly higher rate of penetration and shorter lag time were also noted for MeSa with all the prepared skin samples, compared with the control samples. The results show that clinical techniques routinely used to clean or prepare skin can significantly affect the rate and extent of penetration of a topically applied drug. This may result in greater systemic availability of active drug, which could lead to enhanced efficacy and, possibly, a higher incidence of adverse effects.
Resumo:
We introduce a new approach for fabricating hollow microneedles using vertically-aligned carbon nanotubes (VA-CNTs) for rapid transdermal drug delivery. Here, we discuss the fabrication of the microneedles emphasizing the overall simplicity and flexibility of the method to allow for potential industrial application. By capitalizing on the nanoporosity of the CNT bundles, uncured polymer can be wicked into the needles ultimately creating a high strength composite of aligned nanotubes and polymer. Flow through the microneedles as well as in vitro penetration of the microneedles into swine skin is demonstrated. Furthermore, we present a trade study comparing the difficulty and complexity of the fabrication process of our CNT-polymer microneedles with other standard microneedle fabrication approaches. Copyright © Materials Research Society 2013.
Resumo:
This research book covers the major aspects relating to the use of novel delivery systems in enhancing both transdermal and intradermal drug delivery. It provides a review of transdermal and intradermal drug delivery, including the history of the field and the various methods employed to produce delivery systems from different materials such as device design, construction and evaluation, so as to provide a sound background to the use of novel systems in enhanced delivery applications.
Furthermore, it presents in-depth analyses of recent developments in this exponentially growing field, with a focus on microneedle arrays, needle-free injections, nanoparticulate systems and peptide-carrier-type systems. It also covers conventional physical enhancement strategies, such as tape-stripping, sonophoresis, iontophoresis, electroporation and thermal/suction/laser ablation Discussions about the penetration of the stratum corneum by the various novel strategies highlight the importance of the application method. Comprehensive and critical reviews of transdermal and intradermal delivery research using such systems focus on the outcomes of in vivoanimal and human studies. The book includes laboratory, clinical and commercial case studies featuring safety and patient acceptability studies carried out to date, and depicts a growing area for use of these novel systems is in intradermal vaccine delivery. The final chapters review recent patents in this field and describe the work ongoing in industry.
Resumo:
Skin penetration of the tetrapeptide Ac-Ala-Ala-Pro-Val-NH2 was assessed. This peptide sequence fits the P-P-1 subsites of elastase and inhibits human neutrophil elastase competitively. Consequently this peptide may be therapeutically useful in a variety of inflammatory disorders, including psoriasis. in which elevated levels of human neutrophil elastase have been reported. Peptide penetration was assessed across whole human skin, whole skin with the stratum corneum removed by tape stripping and epidermis, which had been removed from the dermis by heat separation. The influence of 75% aqueous ethanol as a potential penetration enhancer of the tetrapeptide across epidermis was also assessed. The tetrapeptide did not penetrate whole human skin or epidermis, even under the influence of 75% aqueous ethanol. However, when the stratum corneum was removed tetrapeptide flux of 73.39 mug cm(-2) h(-1) was achieved. The study demonstrates that the stratum corneum is the main barrier to tetrapeptide skin penetration and must be overcome if therapeutically relevant amounts of tetrapeptide are to be delivered to the skin.
Resumo:
Objective-To investigate in vitro transdermal absorption of fentanyl from patches through skin samples obtained from various anatomic regions of dogs. Sample Population-Skin samples from 5 Greyhounds. Procedure-Skin samples from the dogs' thoracic, neck, and groin regions were collected postmortem and frozen. After samples were thawed, circular sections were cut and placed in Franz-type diffusion cells in a water bath (32degreesC). A commercial fentanyl patch, attached to an acetate strip with a circular hole, was applied to each skin sample. Cellulose strips were used as control membranes. Samples of receptor fluid in the diffusion cells were collected at intervals for 48 hours, and fentanyl concentrations were analyzed by use of high-performance liquid chromatography. Results-Mean +/- SD release rate of fentanyl from the patch, defined by its absorption rate through the non-rate-limiting cellulose membrane, was linear during the first 8 hours (2.01 +/- 0.05 pg/cm(2) of cellulose membrane/h) and then decreased. Fentanyl passed through skin from the groin region at a faster rate and with a significantly shorter lag time, compared with findings in neck or thoracic skin samples. Conclusions and Clinical Relevance-In vitro, fentanyl from a patch was absorbed more quickly and to a greater extent through skin collected from the groin region of dogs, compared with skin samples from the thoracic and neck regions. Placement of fentanyl patches in the groin region of dogs may decrease the lag time to achieve analgesia perioperatively; however, in vivo studies are necessary to confirm these findings.