97 resultados para Transcriptomes
Resumo:
We undertook deep sequencing of gill transcriptomes from two freshwater crayfish, Cherax cainii and Cherax destructor, in order to generate genomic resources for future genomics research. Over 83 and 100 million high quality (quality score (Q) ≥ 30) paired-end Illumina reads (150 bp) were assembled into 147,101 and 136,622 contigs in C. cainii and C. destructor, respectively. A total of 24,630 and 23,623 contigs received significant BLASTx hits and allowed the identification of multiple gill expressed candidate genes associated with pH and salinity balance. These functionally annotated transcripts will provide a resource to facilitate comparative genomic research in the genus Cherax, and in particular allow insights into respiratory and osmoregulatory physiology of this group of animals.
Resumo:
The main focus of this thesis is the use of high-throughput sequencing technologies in functional genomics (in particular in the form of ChIP-seq, chromatin immunoprecipitation coupled with sequencing, and RNA-seq) and the study of the structure and regulation of transcriptomes. Some parts of it are of a more methodological nature while others describe the application of these functional genomic tools to address various biological problems. A significant part of the research presented here was conducted as part of the ENCODE (ENCyclopedia Of DNA Elements) Project.
The first part of the thesis focuses on the structure and diversity of the human transcriptome. Chapter 1 contains an analysis of the diversity of the human polyadenylated transcriptome based on RNA-seq data generated for the ENCODE Project. Chapter 2 presents a simulation-based examination of the performance of some of the most popular computational tools used to assemble and quantify transcriptomes. Chapter 3 includes a study of variation in gene expression, alternative splicing and allelic expression bias on the single-cell level and on a genome-wide scale in human lymphoblastoid cells; it also brings forward a number of critical to the practice of single-cell RNA-seq measurements methodological considerations.
The second part presents several studies applying functional genomic tools to the study of the regulatory biology of organellar genomes, primarily in mammals but also in plants. Chapter 5 contains an analysis of the occupancy of the human mitochondrial genome by TFAM, an important structural and regulatory protein in mitochondria, using ChIP-seq. In Chapter 6, the mitochondrial DNA occupancy of the TFB2M transcriptional regulator, the MTERF termination factor, and the mitochondrial RNA and DNA polymerases is characterized. Chapter 7 consists of an investigation into the curious phenomenon of the physical association of nuclear transcription factors with mitochondrial DNA, based on the diverse collections of transcription factor ChIP-seq datasets generated by the ENCODE, mouseENCODE and modENCODE consortia. In Chapter 8 this line of research is further extended to existing publicly available ChIP-seq datasets in plants and their mitochondrial and plastid genomes.
The third part is dedicated to the analytical and experimental practice of ChIP-seq. As part of the ENCODE Project, a set of metrics for assessing the quality of ChIP-seq experiments was developed, and the results of this activity are presented in Chapter 9. These metrics were later used to carry out a global analysis of ChIP-seq quality in the published literature (Chapter 10). In Chapter 11, the development and initial application of an automated robotic ChIP-seq (in which these metrics also played a major role) is presented.
The fourth part presents the results of some additional projects the author has been involved in, including the study of the role of the Piwi protein in the transcriptional regulation of transposon expression in Drosophila (Chapter 12), and the use of single-cell RNA-seq to characterize the heterogeneity of gene expression during cellular reprogramming (Chapter 13).
The last part of the thesis provides a review of the results of the ENCODE Project and the interpretation of the complexity of the biochemical activity exhibited by mammalian genomes that they have revealed (Chapters 15 and 16), an overview of the expected in the near future technical developments and their impact on the field of functional genomics (Chapter 14), and a discussion of some so far insufficiently explored research areas, the future study of which will, in the opinion of the author, provide deep insights into many fundamental but not yet completely answered questions about the transcriptional biology of eukaryotes and its regulation.
Resumo:
Amphibian defensive skin secretions are complex, species-specific cocktails of biologically active molecules, including many uncharacterized peptides. The study of such secretions for novel peptide discovery is time-limited, as amphibians are in rapid global decline. While secretion proteome analysis is non-lethal, transcriptome analysis has until now required killing of specimens prior to skin dissection for cDNA library construction. Here we present the discovery that polyadenylated mRNAs encoding dermal granular gland peptides are present in defensive skin secretions, stabilized by endogenous nucleic acid-binding amphipathic peptides. Thus parallel secretory proteome and transcriptome analyses can be performed without killing the specimen in this model amphibian system--a finding that has important implications in conservation of biodiversity within this threatened vertebrate taxon and whose mechanistics may have broader implications in biomolecular science.
Resumo:
While structural studies of reptile venom toxins can be achieved using lyophilized venom samples, until now the cloning of precursor cDNAs required sacrifice of the specimen for dissection of the venom glands. Here we describe a simple and rapid technique that unmasks venom protein mRNAs present in lyophilized venom samples. To illustrate the technique we have RT-PCR-amplified a range of venom protein transcripts from cDNA libraries derived from the venoms of a hemotoxic snake, the Chinese copperhead (Deinagkistrodon acutus), a neurotoxic snake, the black mamba (Dendroaspis polylepis), and a venomous lizard, the Gila monster (Heloderma suspectum). These include a metalloproteinase and phospholipase A2 from D. acutus, a potassium channel blocker, dendrotoxin K, from D. polylepis, and exendin-4 from H. suspectum. These findings imply that the apparent absence and/or lability of mRNA in complex biological matrices is not always real and paves the way for accelerated acquisition of molecular genetic data on venom toxins for scientific and potential therapeutic purposes without sacrifice of endangered herpetofauna.
Resumo:
Whole-genome transcriptome profiling is revealing how biological systems are regulated at the transcriptional level. This study reports the development of a robust method to profile and compare the transcriptomes of two nonmodel plant species, Thlaspi caerulescens, a zinc (Zn) hyperaccumulator, and Thlaspi arvense, a nonhyperaccumulator, using Affymetrix Arabidopsis thaliana ATH1-121501 GeneChip (R) arrays (Affymetrix, Santa Clara, CA, USA). Transcript abundance was quantified in the shoots of agar- and compost-grown plants of both species. Analyses were optimized using a genomic DNA (gDNA)-based probe-selection strategy based on the hybridization efficiency of Thlaspi gDNA with corresponding A. thaliana probes. In silico alignments of GeneChip (R) probes with Thlaspi gene sequences, and quantitative real-time PCR, confirmed the validity of this approach. Approximately 5000 genes were differentially expressed in the shoots of T. caerulescens compared with T. arvense, including genes involved in Zn transport and compartmentalization. Future functional analyses of genes identified as differentially expressed in the shoots of these closely related species will improve our understanding of the molecular mechanisms of Zn hyperaccumulation.
Resumo:
The quest for new control strategies for ticks can profit from high throughput genomics. In order to identify genes that are involved in oogenesis and development, in defense, and in hematophagy, the transcriptomes of ovaries, hemocytes, and salivary glands from rapidly ingurgitating females, and of salivary glands from males of Boophilus microplus were PCR amplified, and the expressed sequence tags (EST) of random clones were mass sequenced. So far, more than 1,344 EST have been generated for these tissues, with approximately 30% novelty, depending on the the tissue studied. To date approximately 760 nucleotide sequences from B. microplus are deposited in the NCBI database. Mass sequencing of partial cDNAs of parasite genes can build up this scant database and rapidly generate a large quantity of useful information about potential targets for immunobiological or chemical control.
Resumo:
Many cell types have no known functional attributes. In the bladder and prostate, basal epithelial and stromal cells appear similar in cytomorphology and share several cell surface markers. Their total gene expression (transcriptome) should provide a clear measure of the extent to which they are alike functionally. Since urologic stromal cells are known to mediate organ-specific tissue formation, these cells in cancers might exhibit aberrant gene expression affecting their function. For transcriptomes, cluster designation (CD) antigens have been identified for cell sorting. The sorted cell populations can be analyzed by DNA microarrays. Various bladder cell types have unique complements of CD molecules. CD9(+) urothelial, CD104(+) basal and CD13(+) stromal cells of the lamina propria were therefore analyzed, as were CD9(+) cancer and CD13(+) cancer-associated stromal cells. The transcriptome datasets were compared by principal components analysis for relatedness between cell types; those with similarity in gene expression indicated similar function. Although bladder and prostate basal cells shared CD markers such as CD104, CD44 and CD49f, they differed in overall gene expression. Basal cells also lacked stem cell gene expression. The bladder luminal and stromal transcriptomes were distinct from their prostate counterparts. In bladder cancer, not only the urothelial but also the stromal cells showed gene expression alteration. The cancer process in both might thus involve defective stromal signaling. These cell-type transcriptomes provide a means to monitor in vitro models in which various CD-isolated cell types can be combined to study bladder differentiation and bladder tumor development based on cell-cell interaction.
Resumo:
Abstract Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.
Resumo:
Large-scale gene expression studies can now be routinely performed on macroamounts of cells, but it is unclear to which extent current methods are valuable for analyzing complex tissues. In the present study, we used the method of serial analysis of gene expression (SAGE) for quantitative mRNA profiling in the mouse kidney. We first performed SAGE at the whole-kidney level by sequencing 12,000 mRNA tags. Most abundant tags corresponded to transcripts widely distributed or enriched in the predominant kidney epithelial cells (proximal tubular cells), whereas transcripts specific for minor cell types were barely evidenced. To better explore such cells, we set up a SAGE adaptation for downsized extracts, enabling a 1,000-fold reduction of the amount of starting material. The potential of this approach was evaluated by studying gene expression in microdissected kidney tubules (50,000 cells). Specific gene expression profiles were obtained, and known markers (e.g., uromodulin in the thick ascending limb of Henle's loop and aquaporin-2 in the collecting duct) were found appropriately enriched. In addition, several enriched tags had no databank match, suggesting that they correspond to unknown or poorly characterized transcripts with specific tissue distribution. It is concluded that SAGE adaptation for downsized extracts makes possible large-scale quantitative gene expression measurements in small biological samples and will help to study the tissue expression and function of genes not evidenced with other high-throughput methods.
Resumo:
The gastrointestinal tracts of multi-cellular blood-feeding parasites are targets for vaccines and drugs. Recently, recombinant vaccines that interrupt the digestion of blood in the hookworm gut have shown efficacy, so we explored the intestinal transcriptomes of the human and canine hookworms, Necator americanus and Ancylostoma caninum, respectively. We used Laser Microdissection Microscopy to dissect gut tissue from the parasites, extracted the RNA and generated cDNA libraries. A total of 480 expressed sequence tags were sequenced from each library and assembled into contigs, accounting for 268 N. americanus genes and 276 A. caninum genes. Only 17% of N. americanus and 36% of A. caninum contigs were assigned Gene Ontology classifications. Twenty-six (9.8%) N. americanus and 18 (6.5%) A. caninum contigs did not have homologues in any databases including dbEST-of these novel clones, seven N. americanus and three A. caninum contigs had Open Reading Frames with predicted secretory signal peptides. The most abundant transcripts corresponded to mRNAs encoding cholesterol-and fatty acid-binding proteins, C-type lectins, Activation-Associated Secretory Proteins, and proteases of different mechanistic classes, particularly astacin-like metallopeptidases. Expressed sequence tags corresponding to known and potential recombinant vaccines were identified and these included homologues of proteases, anti-clotting factors, defensins and integral membrane proteins involved in cell adhesion. (c) 2006 Australian Society for Parasitology Inc Published by Elsevier Ltd. All fights reserved.
Resumo:
Sexual maturation and mating in insects are generally accompanied by major physiological and behavioural changes. Many of these changes are related to the need to locate a mate and subsequently, in the case of females, to switch from mate searching to oviposition behaviour. The prodigious reproductive capacity of the Mediterranean fruit fly, Ceratitis capitata, is one of the factors that has led to its success as an invasive pest species. To identify the molecular changes related to maturation and mating status in male and female medfly, a microarray-based gene expression approach was used to compare the head transcriptomes of sexually immature, mature virgin, and mated individuals. Attention was focused on the changes in abundance of transcripts related to reproduction, behaviour, sensory perception of chemical stimulus, and immune system processes. Broad transcriptional changes were recorded during female maturation, while post-mating transcriptional changes in females were, by contrast, modest. In male medfly, transcriptional changes were consistent both during maturation and as a consequence of mating. Of particular note was the lack of the mating-induced immune responses that have been recorded for Drosophila melanogaster, that may be due to the different reproductive strategies of these species. This study, in addition to increasing our understanding of the molecular machinery behind maturation and mating in the medfly, has identified important gene targets that might be useful in the future management of this pest.
Resumo:
Recent evidence indicates that the estrogen receptor-a-negative, androgen receptor (AR)- positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5a-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDAMB- 453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype. Endocrine-Related Cancer (2012) 19 599–613
Resumo:
Over the past decade the mitochondrial (mt) genome has become the most widely used genomic resource available for systematic entomology. While the availability of other types of ‘–omics’ data – in particular transcriptomes – is increasing rapidly, mt genomes are still vastly cheaper to sequence and are far less demanding of high quality templates. Furthermore, almost all other ‘–omics’ approaches also sequence the mt genome, and so it can form a bridge between legacy and contemporary datasets. Mitochondrial genomes have now been sequenced for all insect orders, and in many instances representatives of each major lineage within orders (suborders, series or superfamilies depending on the group). They have also been applied to systematic questions at all taxonomic scales from resolving interordinal relationships (e.g. Cameron et al., 2009; Wan et al., 2012; Wang et al., 2012), through many intraordinal (e.g. Dowton et al., 2009; Timmermans et al., 2010; Zhao et al. 2013a) and family-level studies (e.g. Nelson et al., 2012; Zhao et al., 2013b) to population/biogeographic studies (e.g. Ma et al., 2012). Methodological issues around the use of mt genomes in insect phylogenetic analyses and the empirical results found to date have recently been reviewed by Cameron (2014), yet the technical aspects of sequencing and annotating mt genomes were not covered. Most papers which generate new mt genome report their methods in a simplified form which can be difficult to replicate without specific knowledge of the field. Published studies utilize a sufficiently wide range of approaches, usually without justification for the one chosen, that confusion about commonly used jargon such as ‘long PCR’ and ‘primer walking’ could be a serious barrier to entry. Furthermore, sequenced mt genomes have been annotated (gene locations defined) to wildly varying standards and improving data quality through consistent annotation procedures will benefit all downstream users of these datasets. The aims of this review are therefore to: 1. Describe in detail the various sequencing methods used on insect mt genomes; 2. Explore the strengths/weakness of different approaches; 3. Outline the procedures and software used for insect mt genome annotation, and; 4. Highlight quality control steps used for new annotations, and to improve the re-annotation of previously sequenced mt genomes used in systematic or comparative research.