958 resultados para Transcranial Doppler


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). METHODS: We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H2O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. RESULTS: Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; P<0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (P<0.001) and in V10-40 than in V10-20 (P<0.01). ABG was not sensitive enough to detect a shunt in 31 patients. CONCLUSIONS: The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: To present the practical aspects of transcranial Doppler (TCD) and provide evidence supporting its use for the management of traumatic brain injury (TBI) patients. RECENT FINDINGS: TCD measures systolic, mean, and diastolic cerebral blood flow (CBF) velocities and calculates the pulsatility index from basal intracranial arteries. These variables reflect the brain circulation, provided there is control of potential confounding factors. TCD can be useful in patients with severe TBI to detect low CBF, for example, during intracranial hypertension, and to assess cerebral autoregulation. In the emergency room, TCD might complement brain computed tomography (CT) scan and clinical examination to screen patients at risk for further neurological deterioration after mild-to-moderate TBI. SUMMARY: The diagnostic value of TCD should be incorporated into other findings from multimodal brain monitoring and CT scan to optimize the bedside management of patients with TBI and help guide the choice of appropriate therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Transcranial Doppler (TCD) pulsatility index (PI) has traditionally been interpreted as a descriptor of distal cerebrovascular resistance (CVR). We sought to evaluate the relationship between PI and CVR in situations, where CVR increases (mild hypocapnia) and decreases (plateau waves of intracranial pressure-ICP). METHODS: Recordings from patients with head-injury undergoing monitoring of arterial blood pressure (ABP), ICP, cerebral perfusion pressure (CPP), and TCD assessed cerebral blood flow velocities (FV) were analyzed. The Gosling pulsatility index (PI) was compared between baseline and ICP plateau waves (n = 20 patients) or short term (30-60 min) hypocapnia (n = 31). In addition, a modeling study was conducted with the "spectral" PI (calculated using fundamental harmonic of FV) resulting in a theoretical formula expressing the dependence of PI on balance of cerebrovascular impedances. RESULTS: PI increased significantly (p < 0.001) while CVR decreased (p < 0.001) during plateau waves. During hypocapnia PI and CVR increased (p < 0.001). The modeling formula explained more than 65% of the variability of Gosling PI and 90% of the variability of the "spectral" PI (R = 0.81 and R = 0.95, respectively). CONCLUSION: TCD pulsatility index can be easily and quickly assessed but is usually misinterpreted as a descriptor of CVR. The mathematical model presents a complex relationship between PI and multiple haemodynamic variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Angiographic studies suggest that acute vasospasm within 48 h of aneurysmal subarachnoid hemorrhage (SAH) predicts symptomatic vasospasm. However, the value of transcranial Doppler within 48 h of SAH is unknown. METHODS: We analyzed 199 patients who had at least 1 middle cerebral artery (MCA) transcranial Doppler examination within 48 h of SAH onset. Abnormal MCA mean blood flow velocity (mBFV) was defined as >90 cm/s. Delayed cerebral ischemia (DCI) was defined as clinical deterioration or radiological evidence of infarction due to vasospasm. RESULTS: Seventy-six patients (38%) had an elevation of MCA mBFV >90 cm/s within 48 h of SAH onset. The predictors of elevated mBFV included younger age (OR = 0.97 per year of age, p = 0.002), admission angiographic vasospasm (OR = 5.4, p = 0.009) and elevated white blood cell count (OR = 1.1 per 1,000 white blood cells, p = 0.003). Patients with elevated mBFV were more likely to experience a 10 cm/s fall in velocity at the first follow-up than those with normal baseline velocities (24 vs. 10%, p < 0.01), suggestive of resolving spasm. DCI developed in 19% of the patients. An elevated admission mBFV >90 cm/s during the first 48 h (adjusted OR = 2.7, p = 0.007) and a poor clinical grade (Hunt-Hess score 4 or 5, OR = 3.2, p = 0.002) were associated with a significant increase in the risk of DCI. CONCLUSION: Early elevations of mBFV correlate with acute angiographic vasospasm and are associated with a significantly increased risk of DCI. Transcranial Doppler ultrasound may be an early useful tool to identify patients at higher risk to develop DCI after SAH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Transcranial Doppler (TCD) is widely used to monitor the temporal course of vasospasm after subarachnoid hemorrhage (SAH), but its ability to predict clinical deterioration or infarction from delayed cerebral ischemia (DCI) remains controversial. We sought to determine the prognostic utility of serial TCD examination after SAH. METHODS: We analyzed 1877 TCD examinations in 441 aneurysmal SAH patients within 14 days of onset. The highest mean blood flow velocity (mBFV) value in any vessel before DCI onset was recorded. DCI was defined as clinical deterioration or computed tomographic evidence of infarction caused by vasospasm, with adjudication by consensus of the study team. Logistic regression was used to calculate adjusted odds ratios for DCI risk after controlling for other risk factors. RESULTS: DCI occurred in 21% of patients (n = 92). Multivariate predictors of DCI included modified Fisher computed tomographic score (P = 0.001), poor clinical grade (P = 0.04), and female sex (P = 0.008). After controlling for these variables, all TCD mBFV thresholds between 120 and 180 cm/s added a modest degree of incremental predictive value for DCI at nearly all time points, with maximal sensitivity by SAH day 8. However, the sensitivity of any mBFV more than 120 cm/s for subsequent DCI was only 63%, with a positive predictive value of 22% among patients with Hunt and Hess grades I to III and 36% in patients with Hunt and Hess grades IV and V. Positive predictive value was only slightly higher if mBFV exceeded 180 cm/s. CONCLUSION: Increased TCD flow velocities imply only a mild incremental risk of DCI after SAH, with maximal sensitivity by day 8. Nearly 40% of patients with DCI never attained an mBFV more than 120 cm/s during the course of monitoring. Given the poor overall sensitivity of TCD, improved methods for identifying patients at high risk for DCI after SAH are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to relate the presence of a temporal acoustic window (TAW) to the variables sex, age and race. This observational study was conducted in patients under etiologic investigation after stroke, sickle-cell anemia and hospitalization in an intensive therapy neurologic unit. TAW presence was confirmed by bilateral assessment by two neurologists via transcranial Doppler (TCD). Multiple logistic regression was performed to explain the presence of the window as a function of sex, age and race. In 20% of the 262 patients evaluated, a TAW was not present. The incidence of TAW presence was greater in men (odds ratio [OR] = 5.4, 95% confidence interval [CI] = 2.5-11.7, p < 0.01); lower with increased age (OR = 0.9, 95% CI = 0.92-0.97, p < 0.01); and lower among those of African and Asian descent (OR = 0.32, 95% CI = 0.14-0.70, p = 0.005). On the basis of the results, more men than women had TAWs, and the decrease in TAWs was associated with increased age and African or Asian descent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyse the cerebral venous outflow in relation to the arterial inflow during a Valsalva manoeuvre (VM). In 19 healthy volunteers (mean age 24.1 +/- 2.6 years), the middle cerebral artery (MCA) and the straight sinus (SRS) were insonated by transcranial Doppler sonography. Simultaneously the arterial blood pressure was recorded using a photoplethysmographic method. Two VM of 10 s length were performed per participant. Tracings of the variables were then transformed to equidistantly re-sampled data. Phases of the VM were analysed regarding the increase of the flow velocities and the latency to the peak. The typical four phases of the VM were also found in the SRS signal. The relative flow velocity (FV) increase was significantly higher in the SRS than in the MCA for all phases, particularly that of phase IV (p < 0.01). Comparison of the time latency of the VM phases of the MCA and SRS only showed a significant difference for phase I (p < 0.01). In particular, there was no significant difference for phase IV (15.8 +/- 0.29 vs. 16.0 +/- 0.28 s). Alterations in venous outflow in phase I are best explained by a cross-sectional change of the lumen of the SRS, while phases II and III are compatible with a Starling resistor. However, the significantly lager venous than the arterial overshoot in phase IV may be explained by the active regulation of the venous tone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcatheter aortic valve implantation (TAVI) is an alternative to surgery for high-risk patients with severe aortic valve stenosis. Periprocedural stroke is reported at an incidence up to 10%. Magnetic resonance imaging studies have identified new onset of clinically silent ischaemic cerebral lesions more frequently (68-84%). So far, few data are available about cerebral embolism during TAVI. The aim of this study was to determine the frequency of high-intensity transient signals (HITS) and to explore differences in the HITS pattern between transfemoral and transapical access and between self-expanding (SE) and balloon-expandable (BE) deployment technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suspected cause of clinical manifestations of patent foramen ovale (PFO) is a transient or a permanent right-to-left shunt (RLS). Contrast-enhanced transcranial Doppler ultrasound (c-TCD) is a reliable alternative to transesophageal echocardiography (TEE) for diagnosis of PFO, and enables also the detection of extracardiac RLS. The air-containing echo contrast agents are injected intravenously and do not pass the pulmonary circulation. In the presence of RLS, the contrast agents bypass the pulmonary circulation and cause microembolic signals (MES) in the basal cerebral arteries, which are detected by TCD. The two main echo contrast agents in use are agitated saline and D-galactose microparticle solutions. At least one middle cerebral artery (MCA) is insonated, and the ultrasound probe is fixed with a headframe. The monitored Doppler spectra are stored for offline analysis (e.g., videotape) of the time of occurrence and number of MES, which are used to assess the size and functional relevance of the RLS. The examination is more sensitive, if both MCAs are investigated. In the case of negative testing, the examination is repeated using the Valsalva maneuver. Compared to TEE, c-TCD is more comfortable for the patient, enables an easier assessment of the size and functional relevance of the RLS, and allows also the detection of extracardiac RLS. However, c-TCD cannot localize the site of the RLS. Therefore, TEE and TCD are complementary methods and should be applied jointly in order to increase the diagnostic accuracy for detecting PFO and other types of RLS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the intraoperative courses of 2 consecutive Berlin Heart Excor® Pediatric Ventricular Assist Device implantations, in which transcranial Doppler ultrasonography helped to detect macroscopically undetected residual air bubbles captured in the pump after air removal had been correctly performed according to manufacturer's specifications. Our experience with these cases suggests that a beat-to beat deairing maneuver guided by transcranial Doppler is a useful strategy for reducing cerebral exposure to perioperative gaseous microembolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The aim of this study was to quantify potential differences in count, frequency and pattern of high-intensity transient signals (HITS) during transapical transcatheter aortic valve implantation (TA-TAVI), by comparing the Symetis Acurate TA (SA) with the balloon-expandable Edwards Sapien XT (ES) system. Background Recently, the Symetis Acurate TA revalving system has been introduced for TA-TAVI. The Symetis Acurate TA aortic bioprosthesis is self-expanding and is deployed by a specific two-step implantation technique. Whether this novel method increases the load of intraprocedural emboli, detected by transcranial Doppler ultrasound (TCD) as HITS, or not is not clear. Methods Twenty-two patients (n = 11 in each study arm, median logistic EuroScore 20%, median STS score 7%) displayed continuous TCD signals of good quality throughout the entire TA-TAVI procedure and were included in the final analysis. Data are presented as median with interquartile ranges. Results No significant differences were detected in total procedural or interval-related HITS load (SA: 303 [200; 594], ES: 499 [285; 941]; p = 0.16). With both devices, HITS peaked during prosthesis deployment (PD), whereas significantly fewer HITS occurred during instrumentation (SA: p = 0.002; ES: <0.001) or post-implantation PI (SA: p = 0.007; ES: <0.001). PD-associated HITS amounted to almost half of the total HITS load. One patient suffered new disabling stroke at 30 days. Thirty-day mortality amounted to 13.6% (3 of 22 patients). Conclusions Simplified transapical delivery using the self-expanding SA device does not increase HITS, despite of a two-step deployment technique with more interactions with the native aortic valve, when compared to the balloon-expandable ES valve. The similarity in HITS count, frequency and pattern with the two systems suggests a common mechanism for the release of cerebral microemboli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Transcranial Doppler (TCD) ultrasonography is a technique that uses a hand-held Doppler transducer (placed on the surface of the cranial skin) to measure the velocity and pulsatility of blood flow within the intracranial and the extracranial arteries. This review critically evaluates the evidence for the use of TCD in the critical care population. Discussion: TCD has been frequently employed for the clinical evaluation of cerebral vasospasm following subarachnoid haemorrhage (SAH). To a lesser degree, TCD has also been used to evaluate cerebral autoregulatory capacity, monitor cerebral circulation during cardiopulmonary bypass and carotid endarterectomies and to diagnose brain death. Technological advances such as M mode, colour Doppler and three-dimensional power Doppler ultrasonography have extended the scope of TCD to include other non-critical care applications including assessment of cerebral emboli, functional TCD and the management of sickle cell disease. Conclusions: Despite publications suggesting concordance between TCD velocity measurements and cerebral blood flow there are few randomized controlled studies demonstrating an improved outcome with the use of TCD monitoring in neurocritical care. Newer developments in this technology include venous Doppler, functional Doppler and use of ultrasound contrast agents.