414 resultados para Transaktiniden, Seaborgium, Dubnium, Rutherfordium, relativistische Effekte
Resumo:
Im Rahmen dieser Arbeit wurden Experimente auf verschiedenen Gebieten der chemischen Charakterisierung der schwersten Elemente durchgeführt. So wurden Vorarbeiten zur Elektrochemie der superschweren Elemente geleistet. Hier konnte gezeigt werden, dass sich Po aus verdünnten Säuren auf Metallelektroden spontan abscheiden lässt. Als wichtigste Reaktionsparameter wurden Temperatur, Konvektion und Viskosität des Elektrolyten identifiziert. Für die Elektrodeposition ist es von Bedeutung, reproduzierbar saubere Elektroden einzusetzen. Auch hierzu konnten Erkenntnisse gewonnen werden. Auf dem Gebiet der Charakterisierung von Nukliden wurde der Elektroneneinfang in Db-263 untersucht. Aus diesem Zerfall geht Rf-263 hervor, welches mit einer Halbwertszeit von 15min überwiegend durch Spontanspaltung zerfällt. Im Experiment wurde Rf-263 mittels Ionenaustauschchromatographie und nachfolgender Flüssig-Flüssig-Extraktion von Db und Aktiniden getrennt. Das erhaltene Präparat wurde auf Alpha-Zerfall und Spontanspaltung untersucht. Die Zahl der Rf-263 Zerfälle lässt auf einen Zerfallszweig durch Elektroneneinfang in Db-263 von 3% schließen. Ein Großteil der Arbeit beschäftigt sich mit der Bestimmung des Kd-Wertes von Sg am Anionenaustauscher Aminex A27 in 0.1M HNO3/5E-3M HF. Beim mit dem ALOHA-System durchgeführten Experiment wurde die Mehrsäulentechnik (MCT) erstmals für die wässrige Chemie von Sg genutzt. Aufgrund zahlreicher Probleme konnte letztlich kein Kd-Wert bestimmt werden. Stattdessen wurde das Experiment einer Fehleranalyse unterzogen. Hier zeigte sich eine Anfälligkeit der MCT auf natürliche Radionuklide. Weiterhin konnten Probleme bei ALOHA aufgedeckt werden, die eine Wiederholung des Experiments ausschlossen. In der Folge wurde ein alternativer Anionenaustauscher charakterisiert, sowie die Elektrolysebedingungen, als wichtiger Schritt der chemischen Aufarbeitung bei der MCT, genauer spezifiziert.
Resumo:
Die Summation ueber des vollstaendige Spektrum des Atoms, die in der Stoehrungstheorie zweiter Ordnung vorkommt, wurde mit Hilfe der Greenschen Funktion Methode berechnet. Die Methode der Greenschen Funktion verlangt die Berechnung der unterschiedlichen Greenschen Funktionen: eine Coulomb-Greensche-Funktion im Fall von wasserstoffaehnlichen Ionen und eine Zentral-feld-Greensche-Funktion im Fall des Vielelektronen-Atoms. Die entwickelte Greensche Funktion erlaubte uns die folgenden atomaren Systeme in die Zweiphotonenionisierung der folgenden atomaren Systeme zu untersuchen: - wasserstoffaehnliche Ionen, um relativistische und Multipol-Effekte aufzudecken, - die aeussere Schale des Lithium; Helium und Helium-aehnliches Neon im Grundzustand, um taugliche Modelle des atomaren Feldes zu erhalten, - K- und L-Schalen des Argon, um die Vielelektronen-Effekte abzuschaetzen. Zusammenfassend, die relativistische Effekte ergeben sich in einer allgemeinen Reduzierung der Zweiphotonen Wirkungsquerschnitte. Zum Beispiel, betraegt das Verhaeltnis zwischen den nichtrelativistischen und relativistischen Wirkungsquerschnitten einen Faktor zwei fuer wasserstoffaehnliches Uran. Ausser dieser relativistischen Kontraktion, ist auch die relativistische Aufspaltung der Zwischenzustaende fuer mittelschwere Ionen sichtbar. Im Gegensatz zu den relativistischen Effekten, beeinflussen die Multipol-Effekte die totalen Wirkungsquerschnitte sehr wenig, so dass die Langwellennaeherung mit der exakten Naeherung fuer schwere Ionen sogar innerhalb von 5 Prozent uebereinstimmt. Die winkelaufgeloesten Wirkungsquerschnitte werden durch die relativistischen Effekte auf eine beeindruckende Weise beeinflusst: die Form der differentiellen Wirkungsquerschnitte aendert sich (qualitativ) abhaengig von der Photonenenergie. Ausserdem kann die Beruecksichtigung der hoeheren Multipole die elektronische Ausbeute um einen Faktor drei aendern. Die Vielelektronen-Effekte in der Zweiphotonenionisierung wurden am Beispiel der K- und L-Schalen des Argon analysiert. Hiermit wurden die totalen Wirkungsquerschnitte in einer Ein-aktives-Elektron-Naeherung (single-active-electron approximation) berechnet. Es hat sich herausgestellt, dass die Elektron--Elektron-Wechselwirkung sehr wichtig fuer die L-Schale und vernachlaessigbar fuer die K-Schale ist. Das bedeutet, dass man die totalen Wirkungsquerschnitte mit wasserstoffaehnlichen Modellen im Fall der K-Schale beschreiben kann, aber fuer die L-Schale fortgeschrittene Modelle erforderlich sind. Die Ergebnisse fuer Vielelektronen-Atome wurden mittels einer Dirac-Zentral-feld-Greenschen Funktion erlangt. Ein numerischer Algorithmus wurde urspruenglich von McGuire (1981) fuer der Schroedinger-Zentral-feld-Greensche Funktion eingefuehrt. Der Algorithmus wurde in dieser Arbeit zum ersten Mal fuer die Dirac-Gleichung angewandt. Unser Algorithmus benutzt die Kummer- und Tricomi-Funktionen, die mit Hilfe eines zuverlaessigen, aber noch immer langsamen Programmes berechnet wurden. Die Langsamkeit des Programms begrenzt den Bereich der Aufgaben, die effizient geloest werden koennen. Die Zentral-feld-Greensche Funktion konnte bei den folgenden Problemen benutzt werden: - Berechnung der Zweiphotonen-Zerfallsraten, - Berechnung der Zweiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung die Multiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung einer atomaren Vielelektronen-Green-Funktion. Von diesen Aufgaben koennen nur die ersten beiden in angemessener Zeit geloest werden. Fuer die letzten beiden Aufgaben ist unsere Implementierung zu langsam und muss weiter verbessert werden.
Polarization and correlation phenomena in the radiative electron capture by bare highly-charged ions
Resumo:
In dieser Arbeit wird die Wechselwirkung zwischen einem Photon und einem Elektron im starken Coulombfeld eines Atomkerns am Beispiel des radiativen Elektroneneinfangs beim Stoß hochgeladener Teilchen untersucht. In den letzten Jahren wurde dieser Ladungsaustauschprozess insbesondere für relativistische Ion–Atom–Stöße sowohl experimentell als auch theoretisch ausführlich erforscht. In Zentrum standen dabei haupsächlich die totalen und differentiellen Wirkungsquerschnitte. In neuerer Zeit werden vermehrt Spin– und Polarisationseffekte sowie Korrelationseffekte bei diesen Stoßprozessen diskutiert. Man erwartet, dass diese sehr empfindlich auf relativistische Effekte im Stoß reagieren und man deshalb eine hervorragende Methode zu deren Bestimmung erhält. Darüber hinaus könnten diese Messungen auch indirekt dazu führen, dass man die Polarisation des Ionenstrahls bestimmen kann. Damit würden sich neue experimentelle Möglichkeiten sowohl in der Atom– als auch der Kernphysik ergeben. In dieser Dissertation werden zunächst diese ersten Untersuchungen zu den Spin–, Polarisations– und Korrelationseffekten systematisch zusammengefasst. Die Dichtematrixtheorie liefert hierzu die geeignete Methode. Mit dieser Methode werden dann die allgemeinen Gleichungen für die Zweistufen–Rekombination hergeleitet. In diesem Prozess wird ein Elektron zunächst radiativ in einen angeregten Zustand eingefangen, der dann im zweiten Schritt unter Emission des zweiten (charakteristischen) Photons in den Grundzustand übergeht. Diese Gleichungen können natürlich auf beliebige Mehrstufen– sowie Einstufen–Prozesse erweitert werden. Im direkten Elektroneneinfang in den Grundzustand wurde die ”lineare” Polarisation der Rekombinationsphotonen untersucht. Es wurde gezeigt, dass man damit eine Möglichkeit zur Bestimmung der Polarisation der Teilchen im Eingangskanal des Schwerionenstoßes hat. Rechnungen zur Rekombination bei nackten U92+ Projektilen zeigen z. B., dass die Spinpolarisation der einfallenden Elektronen zu einer Drehung der linearen Polarisation der emittierten Photonen aus der Streuebene heraus führt. Diese Polarisationdrehung kann mit neu entwickelten orts– und polarisationsempfindlichen Festkörperdetektoren gemessen werden. Damit erhält man eine Methode zur Messung der Polarisation der einfallenden Elektronen und des Ionenstrahls. Die K–Schalen–Rekombination ist ein einfaches Beispiel eines Ein–Stufen–Prozesses. Das am besten bekannte Beispiel der Zwei–Stufen–Rekombination ist der Elektroneneinfang in den 2p3/2–Zustand des nackten Ions und anschließendem Lyman–1–Zerfall (2p3/2 ! 1s1/2). Im Rahmen der Dichte–Matrix–Theorie wurden sowohl die Winkelverteilung als auch die lineare Polarisation der charakteristischen Photonen untersucht. Beide (messbaren) Größen werden beträchtlich durch die Interferenz des E1–Kanals (elektrischer Dipol) mit dem viel schwächeren M2–Kanal (magnetischer Quadrupol) beeinflusst. Für die Winkelverteilung des Lyman–1 Zerfalls im Wasserstoff–ähnlichen Uran führt diese E1–M2–Mischung zu einem 30%–Effekt. Die Berücksichtigung dieser Interferenz behebt die bisher vorhandene Diskrepanz von Theorie und Experiment beim Alignment des 2p3/2–Zustands. Neben diesen Ein–Teichen–Querschnitten (Messung des Einfangphotons oder des charakteristischen Photons) wurde auch die Korrelation zwischen den beiden berechnet. Diese Korrelationen sollten in X–X–Koinzidenz–Messungen beobbachtbar sein. Der Schwerpunkt dieser Untersuchungen lag bei der Photon–Photon–Winkelkorrelation, die experimentell am einfachsten zu messen ist. In dieser Arbeit wurden ausführliche Berechnungen der koinzidenten X–X–Winkelverteilungen beim Elektroneneinfang in den 2p3/2–Zustand des nackten Uranions und beim anschließenden Lyman–1–Übergang durchgeführt. Wie bereits erwähnt, hängt die Winkelverteilung des charakteristischen Photons nicht nur vom Winkel des Rekombinationsphotons, sondern auch stark von der Spin–Polarisation der einfallenden Teilchen ab. Damit eröffnet sich eine zweite Möglichkeit zur Messung der Polaristion des einfallenden Ionenstrahls bzw. der einfallenden Elektronen.
Resumo:
Quantenchemische Untersuchungen von Atomen und Molekülen haben in den letzten Jahren durch die systematische Erweiterung der Methoden und Computerresourcen zunehmend für die Interpretation und Vorhersage experimenteller Ergebnisse an Bedeutung gewonnen. Relativistische Effekte in der Chemie werden zum Beispiel für die gelbe Farbe von Gold und den flüssigen Aggregatzustand von Quecksilber verantwortlich gemacht und müssen daher in quantenchemischen Rechnungen berücksichtigt werden. Relativistische Effekte sind bei leichten Elementen oft so klein, daß sie in vielen quantenchemischen Betrachtungen vernachlässigt werden. Dennoch sind es gerade diese Beiträge, die verbleibende Abweichungen von noch so genauen nichtrelativistischen Rechnungen von ebenso genauen experimentellen Ergebnissen ausmachen können. Relativistische Effekte können auf viele Arten in quantenchemischen Rechnungen berücksichtigt werden. Eine Möglichkeit ist die Störungstheorie. Ein derartiger Ansatz ist die Mass-velocity-Darwin-Näherung, ein anderer die Direkte Störungstheorie. Hier entspricht die relativistische Energiekorrektur erster Ordnung der ersten Ableitung der Energie nach einem relativistischen Störparameter. Für eine Bestimmung der Gleichgewichtsstruktur eines Moleküls müssen die Kräfte auf die Atomkerne bestimmt werden. Diese entsprechen einer ersten Ableitung der Gesamtenergie nach den Kernkoordinaten. Eine Einbeziehung der relativistischen Effekte auf diese Kräfte erfordert daher die gemischte zweite Ableitung der Energie nach dem relativistischen Störparameter und den Kernkoordinaten. Diese relativistischen Korrekturen wurden in dem quantenchemischen Programmpaket ACES2 implementiert. Ein Resultat dieser Arbeit ist, daß nun erstmalig eine Implementierung analytischer Gradienten für die Berechnung relativistischer Korrekturen zu Strukturparametern mit Hilfe der relativistischen Störungstheorie für den Coupled-Cluster-Ansatz bereit steht. Die Coupled-Cluster-Theorie eignet sich besonders gut für die hochgenaue Vorhersage von molekularen Eigenschaften, wie der Gleichgewichtsstruktur. Im Rahmen dieser Arbeit wurde die Basissatzabhängigkeit der relativistischen Beiträge zu Energien, Strukturparametern und harmonischen Schwingungsfrequenzen im Detail untersucht. Für die hier untersuchten Moleküle sind die relativistischen Effekte und Effekte aufgrund der Elektronenkorrelation nicht additiv, so verkürzt die Berücksichtigung relativistischer Effekte bei Hartree-Fock-Rechnungen die Bindung in den Hydrogenhalogeniden, während die Einbeziehung der Elektronenkorrelation durch CCSD(T)-Rechnungen zu einer verlängerten Bindung im Fluorwasserstoff und weniger stark ausgeprägten Korrekturen im Chlor- und Bromwasserstoff führt. Für die anderen hier untersuchten mehratomigen Moleküle findet sich kein einheitlicher Trend; dies unterstreicht die Notwendigkeit expliziter Rechnungen. Damit steht ein leistungsfähiges und vielseitiges Werkzeug für die Berechnung relativistischer Korrekturen auf verschiedenste molekulare Eigenschaften zur Verfügung, das mit modernen, systematisch verbesserbaren quantenchemischen Methoden verknüpft ist. Hiermit ist es möglich, hochgenaue Rechnungen zur Vorhersage und Interpretation von Experimenten durchzuführen.
Resumo:
Die künstlichen Elemente Rutherfordium, Dubnium und Seaborgium werden an Schwerionenbeschleunigern erzeugt. Ihre chemische Untersuchung erfolgt mit computergesteuerten Apparaturen, z.B. ARCA (Automated Rapid Chemistry Apparatus). Ziel der Untersuchungen ist die Einordnung derElemente ins Periodensystem. Im einzelnen beschreibt die vorliegende Arbeit Experimente zur Fluorid- und Chlorid-Komplexierung von Rutherfordium und Dubnium, zum ionischen Zustand von Seaborgium in Nitratlösungen, zur Komplexierung von Seaborgium mit alpha-HIB sowie Vorexperimente zur Reduktion von Seaborgium.
Resumo:
Topic of this thesis is the development of experiments behind the gas-filled separator TASCA(TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements.rnIn the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition.rnPossibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements.rnThe second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream.rnFurthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide – helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All synthesised carbonyl complexes were identified by nuclear decay spectroscopy. Some complexes were studied with isothermal chromatography or thermochromatography methods. The chromatograms were compared with Monte Carlo Simulations to determine the adsorption enthalpyrnon silicon dioxide and on gold. These simulations based on existing codes, that were modified for the different geometries of the chromatography channels. All observed adsorption enthalpies (on silcon oxide as well as on gold) are typical for physisorption. Additionally, the thermalstability of some of the carbonyl complexes was studied. This showed that at temperatures above 200 °C therncomplexes start to decompose.rnIt was demonstrated that carbonyl-complex chemistry is a suitable method to study rutherfordium, dubnium, seaborgium, bohrium, hassium, and meitnerium. Until now, only very simple, thermally stable compounds have been synthesized in the gas-phase chemistry of the transactindes. With the synthesis of transactinide-carbonyl complexes a new compound class would be discovered. Transactinide chemistry would reach the border between inorganic and metallorganic chemistry.rnFurthermore, the in-situ synthesised carbonyl complexes would allow nuclear spectroscopy studies under low background conditions making use of chemically prepared samples.
Resumo:
Das Studium chemischer Eigenschaften der schwersten Elemente, der Transactiniden, erfordert immer leistungsfähigere Apparaturen. Wegen ihrer kurzen Halbwertszeiten müssen diese Elemente schnell von der Targetkammer mittels Gasjet zur Apparatur transportiert und dort in die wässrige Phase überführt werden. Das sollte zur Vermeidung von Verlusten durch vorzeitigen Zerfall möglichst online betrieben werden, d.h. die in der Kernreaktion gebildeten Atome werden kontinuierlich aus der Targetkammer ausgespült und in der Apparatur in die wässrige Phase überführt. Dabei stellt sich das Problem, die kleinen Aerosol-Partikel (100-200 nm und etwa 1010 Teilchen pro Liter) bei einem Gasfluss von 2 bis 3 Liter Jet-Gas pro min in eine mit 1 bis 2 mL/min fließende wässrige Lösung zu überführen. Hierzu wurden zwei verschiedene Systeme am TRIGA-Reaktor Mainz entwickelt und in Experimenten an den Schwerionenbeschleunigern am PSI und der GSI erfolgreich eingesetzt. Da die diskontinuierlich arbeitende Chemieapparatur ARCA, mit der bisher chemische Eigenschaften der Elemente 101, 103, 104, 105 und 106 bestimmt wurden, wegen niedriger Produktionsraten bei Element 106 an ihre technologischen Grenzen stößt, bestand eine weitere Aufgabe der vorliegenden Arbeit darin, ein kontinuierlich arbeitendes Chromatographiesystem aufzubauen, mit dem Verteilungskoeffizienten des Elements 106 gemessen werden können. Bei der in dieser Arbeit entwickelten und in Versuchen mit kurzlebigen Hafnium-, Wolfram- und Rutherfordium-Isotopen getesten, kontinuierlich arbeitenden Mehrsäulentechnik wird der direkte Nachweis des Transactinids aufgegeben, und die Retentionszeit in dem chromatographischen System über die Menge der während der Retention zerfallenen Atome bestimmt. Neben der apparativen Entwicklung dieser Technik, die geringste Totvolumina im System erfordert, mussten bei der Auswahl des geeigneten chemischen Systems die engen Grenzen dieser Methode beachtet werden, was umfangreiche Kenntnisse zur trägerfreien Chemie der homologen Elemente erfordert. Neben Batchexperimenten mit trägerfrei produzierten Nukliden wurde für offline-Experimente auch ARCA erfolgreich eingesetzt. Der Vergleich von Kd-Werten, die in Batchexperimenten, mit ARCA und mit der prinzipiell neuen Methode der Mehrsäulentechnik bestimmt wurden, zeigten dabei gute Übereinstimmungen. Für die Anwendbarkeit der Mehrsäulentechnik sind aber auch geeignete radioaktive Zerfallsketten notwendig, die in einem langlebigen Isotop enden sollten, welches über lange Experimentierzeiten akkumuliert werden kann. Dabei ist die Diskriminierung von einzelnen Atomen langlebiger Actiniden als Endglieder der Zerfallskette der Transactiniden gegen den natürlichen und elektronischen Untergrund sehr anspruchsvoll und möglicherweise der limitierende Faktor dieser Technik. Neben Beiträgen zur Fluoridkomplexierung von Elementen der 4. Nebengruppe (inklusive Rutherfordium) und der 6. Nebengruppe, wurde die Hydrolyse von Elementen der 6. Nebengruppe untersucht. Hier zeigen sich bei Verwendung von trägerfreien Aktivitäten abweichende Resultate gegenüber der Literatur.Auf der Grundlage dieser Daten wurde ein Mehrsäulenexperiment für 7,4-s 265Sg (Element 106) vorbereitet, für dessen Einsatz sowohl ein drehendes Targetradsystem für eine erhöhte Produktionsrate getestet wurde, als auch der Einsatz von speziell funktionalisierten Ionenaustauscherharzen.
Resumo:
[s.c.]
Resumo:
Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.
Resumo:
For the theoretical investigation of local phenomena (adsorption at surfaces, defects or impurities within a crystal, etc.) one can assume that the effects caused by the local disturbance are only limited to the neighbouring particles. With this model, that is well-known as cluster-approximation, an infinite system can be simulated by a much smaller segment of the surface (Cluster). The size of this segment varies strongly for different systems. Calculations to the convergence of bond distance and binding energy of an adsorbed aluminum atom on an Al(100)-surface showed that more than 100 atoms are necessary to get a sufficient description of surface properties. However with a full-quantummechanical approach these system sizes cannot be calculated because of the effort in computer memory and processor speed. Therefore we developed an embedding procedure for the simulation of surfaces and solids, where the whole system is partitioned in several parts which itsself are treated differently: the internal part (cluster), which is located near the place of the adsorbate, is calculated completely self-consistently and is embedded into an environment, whereas the influence of the environment on the cluster enters as an additional, external potential to the relativistic Kohn-Sham-equations. The basis of the procedure represents the density functional theory. However this means that the choice of the electronic density of the environment constitutes the quality of the embedding procedure. The environment density was modelled in three different ways: atomic densities; of a large prepended calculation without embedding transferred densities; bulk-densities (copied). The embedding procedure was tested on the atomic adsorptions of 'Al on Al(100) and Cu on Cu(100). The result was that if the environment is choices appropriately for the Al-system one needs only 9 embedded atoms to reproduce the results of exact slab-calculations. For the Cu-system first calculations without embedding procedures were accomplished, with the result that already 60 atoms are sufficient as a surface-cluster. Using the embedding procedure the same values with only 25 atoms were obtained. This means a substantial improvement if one takes into consideration that the calculation time increased cubically with the number of atoms. With the embedding method Infinite systems can be treated by molecular methods. Additionally the program code was extended by the possibility to make molecular-dynamic simulations. Now it is possible apart from the past calculations of fixed cores to investigate also structures of small clusters and surfaces. A first application we made with the adsorption of Cu on Cu(100). We calculated the relaxed positions of the atoms that were located close to the adsorption site and afterwards made the full-quantummechanical calculation of this system. We did that procedure for different distances to the surface. Thus a realistic adsorption process could be examined for the first time. It should be remarked that when doing the Cu reference-calculations (without embedding) we begun to parallelize the entire program code. Only because of this aspect the investigations for the 100 atomic Cu surface-clusters were possible. Due to the good efficiency of both the parallelization and the developed embedding procedure we will be able to apply the combination in future. This will help to work on more these areas it will be possible to bring in results of full-relativistic molecular calculations, what will be very interesting especially for the regime of heavy systems.
Resumo:
Das Mainzer Neutrinomassenexperiment untersucht dasBetaspektrum von Tritium in der Naehe des Endpunktes undbestimmt daraus die Ruhemasse des Elektronantineutrinos. DieMessungen werden mit einem integrierenden, elektrostatischenGegenfeldspektrometer durchgefuehrt, bei dem das Prinzip dermagnetischen adiabatischen Kollimation angewandt wird, umgleichzeitig hohe Raumwinkelakzeptanz (bis maximal 2Pi) undeine sehr gute Energieaufloesung (E/dE=4000) zu erreichen.Als Tritiumquellen werden schockkondensierte Tritiumfilmeeingesetzt.Der Schwerpunkt dieser Arbeit bestand darin, das MainzerExperiment in entscheidenden Punkten zu verbessern. Das Zielwar, die Sensitivitaet auf die Neutrinomasse zu erhoehen unddie von der Troitskgruppe berichtete Anomalie imTritium-Betaspektrum zu ueberpruefen. Diese beschreibt einemonoenergetische Line variabler Amplitude einige eVunterhalb des Betaendpunktes, deren Positioin mit einerHalbjahresperiode variiert.Nach dem Umbau 1995-1997 wurde der Endpunktsbereich desTritium-Betaspektrums bis Ende 1998 in 4 Messphasen ueberjeweils 1 Monat vermessen. Die erreichte Sensitivitaet derMainzer Daten war ausreichend, um die Troitsk Hypothese zuueberpruefen. Eine der 3 im Jahr 1998 durchgefuehrtenMessungen unterstuetzt die Hypothese, die Daten einer 6Monate spaeter durchgefuehrten Messung dagegen nicht. Somitstehen die Ergebnisse im Widerspruch zur postuliertenHalbjahresperiode.Die neuen Messungen zeigen bei Vergroesserung desAuswerteintervalls keinen Trend zu unphysikalisch negativenMassenquadraten. Es kann eine neue Neutrinomassenobergerenzevon 3.0 eV/c/c abgeleitet werden.