789 resultados para Trans-epidermal Delivery
Resumo:
In inflammatory disorders (e.g. psoriasis), local concentrations of human neutrophil elastase (HNE), also known as polymorphonuclear leukocyte elastase (HLE), possibly overwhelm its natural inhibitors leading to extracellular matrix degradation. Elevated levels of HNE have been reported in a variety of inflammatory disorders, including psoriasis. Peptidic HNE inhibitors have a common hydrophobic sequence (Ala-Ala-Pro-Val). This peptide sequence inhibits HNE competitively; however the stratum corneum presents an effective barrier to the delivery of this tetrapeptide across the skin. The current work investigates the delivery of the modified peptide whereby the tetrapeptide was lipidated to enhance its ability to penetrate the stratum The tetrapeptide Was Coupled to a racaemic mixture of a short chain lipoamino acid (LAA) resulting in two diastereomers of the lipoamino acid-modified tetrapeptide. The penetration of the lipopeptide mixture was assessed across human epidermis in vitro. The percentage of applied dose penetrating to the receptor over 8 h following administration was 2.53% for the D-LAA conjugate and 1.47% for the L-diastereomer, compared to 0% for the peptide. The D-diastereomer appears to be relatively stable but the L-diastereomer appears to degrade releasing possibly the tetrapeptide and peptide fragment(s). Therefore the results clearly indicate that coupling the tetrapeptide to a short chain LAA enhances its delivery across human epidermis.
Resumo:
Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. Surgically removed skin from patients undergoing abdominoplasty was immediately dermatomed (800 μm) and mounted on flow-through diffusion cells (1.77 cm(2)) operating at 32°C with cell culture media (aqueous solution) as the reservoir liquid. The cells were dosed either with neat DEHP or emulsified in aqueous solution (166 μg/ml). Samples were analysed by HPLC-MS/MS. DEHP permeated human viable skin only as the metabolite MEHP (100%) after 8h of exposure. Human skin was able to further oxidize MEHP to 5-oxo-MEHP. Neat DEHP applied to the skin hardly permeated skin while the aqueous solution readily permeated skin measured in both cases as concentration of MEHP in the receptor liquid. DEHP pass through human skin, detected as MEHP only when emulsified in aqueous solution, and to a far lesser degree when applied neat to the skin. Using results from older in vitro skin permeation studies with non-viable skin may underestimate skin exposures. Our results are in overall agreement with newer phthalate skin permeation studies.
Resumo:
A grande diversidade de apósitos disponível para a recuperação da integridade cutânea torna complexa e difícil a sua escolha. Torna-se pois fundamental, aprofundar o conhecimento sobre o impacto específico dos diferentes materiais de penso. O presente estudo pretende ilustrar o impacto da oclusão na recuperação da função de “barreira” da pele e envolveu 8 mulheres saudáveis ( = 22,6±1,1) em cujos antebraços foram marcados 3 sítios experimentais sujeitos a biopsia superficial cutânea (BSC) com cianoacrilato, mantendo integro um quarto local, assim utilizado como controlo negativo (CN). Dois dos locais experimentais sujeitos a BSC foram aleatoriamente ocludidos com o apósito de hidroxipoliuretano (PermaFoam®, Hartmann)(sitio A) ou com parafilm (sitio B) e o terceiro local (sitio C) deixado sem oclusão, funcionando como controlo positivo (CP). As variáveis em estudo foram a Perda Transepidérmica de água (PTEA, Tewameter TM300), o eritrema (Minolta CR3000) e a microcirculação local (LDF Periflux). Os resultados sugerem uma mais rápida recuperação da integridade cutânea nos sítios ocludidos, quando comparados com o respectivo controle, salientando-se nestes, o local tratado com o apósito de hidroxipoliuretano. Conclui-se que, nas presentes condições experimentais, a oclusão determina uma maior e mais rápida recuperação da integridade cutânea in vivo.
Resumo:
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py = pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600 nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2 h of incubation. The complex with concentrations lower than 1 x 10(-4) M did not show toxicity in B16-F 10 murine cells. The complex in solution is toxic at higher concentrations (> 1 x 10(-3) M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by radiation with light only. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Because of its antiproliferative and differentiation-inducing properties, all-trans-retinoic acid (ATRA) has been used as a chemopreventive and therapeutic agent, for treatment various cancers including squamous cell carcinomas (SCCs). Long-term treatment with ATRA is associated with toxic effects in patients leading to acute or chronic hypervitaminosis syndrome. Moreover, prolonged treatment with oral ATRA leads to acquired resistance to the differentiation-inducing effects of the drug. This resistance is attributed to the induction of cytochrome P-450-dependent catabolic enzymes that lead to accelerated ATRA metabolism and decline in circulating levels. Most of these problems could be circumvented by incorporating ATRA in liposomes (L-ATRA) which results in sustained drug release, decrease in drug-associated toxicity, and protection of the drug from metabolism in the host. Liposomes also function as a solubilization matrix enabling lipophilic drugs like ATRA to be aerosolized and delivered directly to target areas in the aerodigestive tract and lungs. Of the 14 formulations tested, the positively-charged liposome, DPPC:SA (9:1, w/w) was found to be most effective in interacting with SCC cell lines. This, L-ATRA formulation was stable in the presence of serum proteins and buffered the toxic effects of the drug against several normal and malignant cell lines. The positive charge attributed by the presence of SA was critical for increased uptake and retention of L-ATRA by SCC cell lines and tumor spheroids. L-ATRA was highly effective in mediating differentiation in normal and transformed epithelial cells. Moreover, liposomal incorporation significantly reduced the rate of ATRA metabolism by cells and isolated liver microsomes. In vivo studies revealed that aerosol delivery is an effective way of administering L-ATRA, in terms of its safety and retention by lung tissue. The drug so delivered, is biologically active and had no toxic effects in mice. From these results, we conclude that liposome-incorporation is an excellent way of delivering ATRA to target tissues. The results obtained may have important clinical implications in treating patients with SCCs of the aerodigestive tract. ^
Resumo:
In nonpolarized epithelial cells, microtubules originate from a broad perinuclear region coincident with the distribution of the Golgi complex and extend outward to the cell periphery (perinuclear [PN] organization). During development of epithelial cell polarity, microtubules reorganize to form long cortical filaments parallel to the lateral membrane, a meshwork of randomly oriented short filaments beneath the apical membrane, and short filaments at the base of the cell; the Golgi becomes localized above the nucleus in the subapical membrane cytoplasm (apiconuclear [AN] organization). The AN-type organization of microtubules is thought to be specialized in polarized epithelial cells to facilitate vesicle trafficking between the trans-Golgi Network (TGN) and the plasma membrane. We describe two clones of MDCK cells, which have different microtubule distributions: clone II/G cells, which gradually reorganize a PN-type distribution of microtubules and the Golgi complex to an AN-type during development of polarity, and clone II/J cells which maintain a PN-type organization. Both cell clones, however, exhibit identical steady-state polarity of apical and basolateral proteins. During development of cell surface polarity, both clones rapidly establish direct targeting pathways for newly synthesized gp80 and gp135/170, and E-cadherin between the TGN and apical and basolateral membrane, respectively; this occurs before development of the AN-type microtubule/Golgi organization in clone II/G cells. Exposure of both clone II/G and II/J cells to low temperature and nocodazole disrupts >99% of microtubules, resulting in: 1) 25–50% decrease in delivery of newly synthesized gp135/170 and E-cadherin to the apical and basolateral membrane, respectively, in both clone II/G and II/J cells, but with little or no missorting to the opposite membrane domain during all stages of polarity development; 2) ∼40% decrease in delivery of newly synthesized gp80 to the apical membrane with significant missorting to the basolateral membrane in newly established cultures of clone II/G and II/J cells; and 3) variable and nonspecific delivery of newly synthesized gp80 to both membrane domains in fully polarized cultures. These results define several classes of proteins that differ in their dependence on intact microtubules for efficient and specific targeting between the Golgi and plasma membrane domains.
Resumo:
The premature photoaging of the skin is mediated by the sensitization of reactive oxygen species after absorption of ultraviolet radiation by endogenous chromophores. Yet identification of UV-A-absorbing chromophores in the skin that quantitatively account for the action spectra of the physiological responses of photoaging has remained elusive. This paper reports that the in vitro action spectrum for singlet oxygen generation after excitation of trans-urocanic acid mimics the in vivo UV-A action spectrum for the photosagging of mouse skin. The data presented provide evidence suggesting that the UV-A excitation of trans-urocanic acid initiates chemical processes that result in the photoaging of skin.
Resumo:
Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.
Resumo:
The use of gene guns in ballistically delivering DNA vaccine coated gold micro-particles to skin can potentially damage targeted cells, therefore influencing transfection efficiencies. In this paper, we assess cell death in the viable epidermis by non-invasive near infrared two-photon microscopy following micro-particle bombardment of murine skin. We show that the ballistic delivery of micro-particles to the viable epidermis can result in localised cell death. Furthermore, experimental results show the degree of cell death is dependant on the number of micro-particles delivered per unit of tissue surface area. Micro-particles densities of 0.16 +/- 0.27 (mean +/- S.D.), 1.35 +/- 0.285 and 2.72 +/- 0.47 per 1000 mu m(2) resulted in percent deaths of 3.96 +/- 5.22, 45.91 +/- 10.89, 90.52 +/- 12.28, respectively. These results suggest that optimization of transfection by genes administered with gene guns is - among other effects - a compromise of micro-particle payload and cell death. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: Biolistic injections provide a needle-free delivery of antigen-laden microparticles to the epithelium. The precision of the injection preferentially targets the Langerhans cell network, which, although ideal for vaccination, might not be suitable for the downregulation of immune responses in immunotherapy. Objective: We sought to determine the ability of biolistic injection of antigen into the epithelium of sensitized mice to inhibit IgE antibody and lung inflammatory responses produced by further exposure to antigen. Methods: Mice were sensitized by means of a needle injection of ovalbumin (OVA) in alum and given a series of biolistic injections of OVA or vehicle control, followed by a boost of OVA in alum. Serum IgE and IgG antibodies were measured before and after the boost. The mice were then challenged intranasally, and the infiltration of inflammatory cells was measured by means of bronchoalveolar lavage. Airway reactivity of the challenged mice was measured by examining responses to methacholine with forced oscillatory techniques. Results: Biolistic injection of OVA into the dorsal skin of sensitized mice markedly inhibited IgE and IgG1 antibody responses induced by boosting. IgG2a antibody responses were reduced rather than stimulated. The eosinophilic inflammation in the bronchoalveolar lavage fluid induced by intranasal challenge was also markedly inhibited. Lung hyperreactivity showed an initial increase and then a decrease of responsiveness to methacholine, with elastance returning to the level of unsensitized mice. Biolistic injection into the buccal epithelium was also inhibitory. Conclusions: Biolistic injection of allergen inhibited the boosting of IgE antibody and eosinophilic lung inflammatory responses without inducing TO immunity.
Resumo:
Hammerhead ribozymes are potent RNA molecules which have the potential to specifically inhibit gene expression by catalysing the trans-cleavage of mRNAs. However, they are unstable in biological fluids and cellular delivery poses a problem. Site-specific chemical modification of hammerhead ribozymes was evaluated as a means of enhancing biological stability. Chimeric, 2'-O-methylated ribozymes, containing only five unmodified ribonucleotides, were catalytically active in vitro (kcat = 1.46 min-1) and were significantly more stable in serum and lysosomal enzymes than unmodified (all-RNA) counterparts. Furthermore, they remained undegraded in cell-containing media for up to 8 hours. Stability enhancement allowed cellular uptake properties of radiolabelled ribozymes to be assessed following exogenous delivery. Studies in vulval and glial cell lines indicated that chimeric ribozymes became cell-associated via an inefficient process, which was energy and concentration dependant. A considerable proportion of ribozymes remained bound to cell-surface components, however, a small proportion (<1%) were internalised via mechanisms of adsorptive and / or receptor mediated endocytosis. Fluorescent microscopy indicated that ribozymes were localised within endosomal / lysosomal vesicles following cell entry. This was confirmed by immuno-electron microscopy, which allowed the detection of biotin-labelled ribozymes within the cell ultrastructure. Despite the predominant localisation within endocytic vesicles, a small proportion of internalised ribozymes appeared able to exit these compartments and penetrate target sites within the nucleus and cytoplasm. The ribozymes designed in this report were directed against the epidermal growth factor receptor mRNA, which is over-expressed in a malignant brain disease called glioblastoma multiforme. In order to examine the fate of ribozymes in the brain, the distribution of FITC-labelled ribozymes was examined following intra-cerebro ventricular injection to mice. FITC-ribozymes demonstrated high punctate pattern of distribution within the striatum and cortex, which appeared to represent localisation within cell bodies and dendritic processes. This suggested that delivery to glial cells in vivo may be possible. Finally, strategies were investigated to enhance the cellular delivery of ribozymes. Conjugation of ribozymes to anti~transferrin receptor antibodies improved cellular uptake 3-fold as a result of a specific interaction with transferrin receptors. Complexation with cationic liposomes also significantly improved cell association, however, some toxiclty was observed and this could be a limitation to their use. Overall, it would appear that hammerhead ribozymes can be chemically stabilised to allow direct exogenous administration in vivo. However, additional delivery strategies are probably required to improve cellular uptake, and thus, allow ribozymes to achieve their full potential as pharmaceutical agents. KEYWORDS: Catalytic
Resumo:
Chitosan treated alginate microparticles were prepared with the purpose of incorporating all-trans retinoic acid (ATRA) using an inexpensive, simple and fast method, enhancing dermal localization and sustaining the release of ATRA into the skin. Microparticles characterization, drug-polymer interaction, release profile and in vitro skin retention were investigated. Microparticles presented spherical shape and drug loading capacity of 47%. The drug content of these microparticles was affected by ATRA concentration and by the solvent used and it was more weakly affected by chitosan concentration. The release of ATRA was also affected by chitosan concentration. Microparticles prepared with 0.4% chitosan (w/w) resulted in drug release with a more sustained profile. The results of in vitro retention studies showed that chitosan treated alginate microparticles decreased the drug retention in the stratum corneum (SC), where occur the skin irritation, but maintained the ATRA concentration in the deeper skin layers, where occur the pathologies treated with ATRA. Then, the microparticles developed in this work can be a good candidate to improve the topical therapy with retinoid.
Resumo:
Purpose, An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (r(j)) approaching the pore radii (r(p)) as well as approximation of the pore restriction form for r(j)/r(p) < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis. Methods, The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux. Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes. Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.
Resumo:
Purpose, An in vitro study was carried out to determine the iontophoretic permeability of local anesthetics through human epidermis. The relationship between physicochemical structure and the permeability of these solutes was then examined using an ionic mobility-pore model developed to define quantitative relationships. Methods. The iontophoretic permeability of both ester-type anesthetics (procaine, butacaine, tetracaine) and amide-type anesthetics (prilocaine, mepivacaine, lidocaine, bupivacaine, etidocaine, cinchocaine) were determined through excised human epidermis over 2 hrs using a constant d.c. current and Ag/AgCl electrodes. Individual ion mobilities were determined from conductivity measurements in aqueous solutions. Multiple stepwise regression was applied to interrelate the iontophoretic permeability of the solutes with their physical properties to examine the appropriateness of the ionic mobility-pore model and to determine the best predictor of iontophoretic permeability of the local anesthetics. Results. The logarithm of the iontophoretic permeability coefficient (log PCj,iont) for local anesthetics was directly related to the log ionic mobility and MW for the free volume form of the model when other conditions are held constant. Multiple linear regressions confirmed that log PCj,iont was best defined by ionic mobility (and its determinants: conductivity, pK(a) and MW) and MW. Conclusions. Our results suggest that of the properties studied, the best predictors of iontophoretic transport of local anesthetics are ionic mobility (or pK(a)) and molecular size. These predictions are consistent with the ionic mobility pore model determined by the mobility of ions in the aqueous solution, the total current, epidermal permselectivity and other factors as defined by the model.
Resumo:
Reasons for performing study: Light microscopical studies show that the key lesion of laminitis is separation at the hoof lamellar dermal-epidermal interface. More precise knowledge of the damage occurring in the lamellar basement membrane zone may result if laminitis affected tissue is examined with the transmission electron microscope. This could lead to better understanding of the pathogenesis of lesions and the means of treatment or prevention. Objectives: To investigate the ultrastructure of acute laminitis as disease of greater severity is induced by increasing oligofructose (OF) dosage. Methods: Three pairs of normal horses, dosed with OF at 7.5, 10 and 12.5 g/kg bwt via nasogastric intubation, developed laminitis 48 h later. Following euthanasia, their forefeet were processed for transmission electron microscopy. Lamellar basal cell hemidesmosome (HD) numbers and the distance between the basal cell plasmalemma and the lamina densa of the basement membrane were estimated and compared to control tissue. Results: Increasing OF dosage caused greater HD loss and more severe laminitis. The characteristic separation of the basement membrane, cytoskeleton failure and rounded basal cell nuclei results from combined HD dysassembly and anchoring filament failure. Conclusions: Without properly assembled HDs, dysadhesion between the lamina densa of the basement membrane (BM) and epidermal basal cells occurs, emphasising the fundamental importance of HDs in maintaining attachment at the lamellar interface. Medical conditions that trigger lamellar matrix metalloproteinase (MMP) activation and/or compromise entry of glucose into lamellar basal cells appear to promote loss and failure of HDs and, therefore, laminitis development. Potential relevance: A correlation between lameness severity and escalating loss of lamellar HDs now exists. Therapy aimed at protecting the lamellar environment from haematogenous delivery of MMP activators or from glucose deprivation may control laminitis development.