984 resultados para Trans-Membrane Pressure (TMP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper evaluates the critical flux obtained by different techniques including tests with different flux step lengths (20 and 40 min and 7 days) and modes of operation (continuous and intermittent) under low and high MLSS concentrations. The paper also analyses a couple of long-term tests (flow rate of 40 and 20 L/day) to obtain the time required to reach the critical flux experimentally and compares those values with the results obtained numerically from a mathematical model. It was found that intermittent mode with membrane relaxation was useful in controlling the fouling of membrane and in restoring the membrane from fouling at lower MLSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pentachlorophenol (PCP) is a toxic chemical, often used in the formulation of pesticide, herbicide, anti fungal agent, bactericide and wood preservative. This study is aimed at evaluating the potential of membrane bioreactor (MBR) to treat PCP contaminated wastewater. Synthetic wastewater with COD of 600 mg/L was fed into the MBR at varied PCP loading rate of 12–40 mg/m3/d. A PCP removal rate of 99% and a COD removal rate of 95% were achieved at a hydraulic retention time of 12 hs and a mixed liquor suspended solids (MLSS) concentration of 10,000 mg/L. When sodium pentachlorophenol (NaPCP), which has higher solubility in water, was used in the second phase of the study, at loading rates varying from 20 to 200 mg/m3·d, the removal rate of NaPCP was higher than 99% and the removal rate of COD was more than 96%. It was also found that at higher biomass concentrations, biosorption played an important role besides the biodegradation process. Batch experiments conducted in this study revealed that the sorption capacity to be 0.63 (mg PCP/g biomass) and occurred rapidly within 60 min. This phenomenon could enhance the PCP degradation through increased contact between microorganism and PCP. Further, the membrane resistance was low (trans-membrane pressure of 14 kPa) even after more than 100 ds of operation. In addition, the toxic level of PCP in the influent could have induced the microorganisms to secrete more extra-cellular polymeric substances (EPS) for their protection, which in turn must have increased the viscosity of the mixed liquor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Minimizing resection and preserving leaflet tissue has been previously shown to be beneficial for mitral valve function and leaflet kinematics after repair of acute posterior leaflet prolapse in porcine valves. We examined the effects of different additional methods of mitral valve repair (neochordoplasty, ring annuloplasty, edge-to-edge repair and triangular resection) on hemodynamics at different heart rates in an experimental model. Methods: Severe acute P2 prolapse was created in eight porcine mitral valves by resecting the posterior marginal chordae. Valve hemodynamics was quantified under pulsatile conditions in an in vitro heart simulator before and after surgical manipulation. Mitral regurgitation was corrected using four different methods of repair on the same valve: neochordoplasty with expanded polytetrafluoroethylene sutures alone and together with ring annuloplasty, edge-to-edge repair and triangular resection, both with non-restrictive annuloplasty. Residual mitral valve leak, trans-valvular pressure gradients, flow and cardiac output were measured at 60 and 80 beats/min. A validated statistical linear mixed model was used to analyze the effect of treatment. The p values were calculated using a two-sided Wald test. Results: Only neochordoplasty with expanded polytetrafluoroethylene sutures but without ring annuloplasty achieved similar hemodynamics compared to those of the native mitral valve (p range 0.071-0.901). Trans-valvular diastolic pressure gradients were within a physiologic range but significantly higher than those of the native valve following neochordoplasty with ring annuloplasty (p=0.000), triangular resection (p=0.000) and edge-to-edge repair (p=0.000). Neochordoplasty alone was significantly better in terms of hemodynamic than neochordoplasty with a ring annuloplasty (p=0.000). These values were stable regardless of heart rate or ring size. Conclusions: Neochordoplasty without ring annuloplasty is the only repair technique able to achieve almost native physiological hemodynamics after correction of leaflet prolapse in a porcine experimental model of acute chordal rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane proteins, which constitute approximately 20% of most genomes, are poorly tractable targets for experimental structure determination, thus analysis by prediction and modelling makes an important contribution to their on-going study. Membrane proteins form two main classes: alpha helical and beta barrel trans-membrane proteins. By using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we addressed alpha-helical topology prediction. This method has accuracies of 77.4% for prokaryotic proteins and 61.4% for eukaryotic proteins. The method described here represents an important advance in the computational determination of membrane protein topology and offers a useful, and complementary, tool for the analysis of membrane proteins for a range of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address beta-barrel topology prediction. The beta-barrel topology predictor reports individual strand accuracies of 88.6%. The method outlined here represents a potentially important advance in the computational determination of membrane protein topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of ultrafiltration (UF) membranes with molecular weight cut off (MWCO) of 1000 and 3500 Da in clarifying sugar cane juice was investigated, as well as the performance of a nanofiltration (NF) membrane with MWCO of 200 Da and a reverse osmosis (RO) membrane in concentrating sugar cane juice. For both cases the sugar cane juice had been limed and partially clarified. The UF membranes were found to be effective at clarifying the sugar cane juice in terms of purity rise and reduction in turbidity, colour, starch and protein. A purity rise of approximately 6 was achieved by both UF membranes at trans-membrane pressures (TMP) from 15 to 25 bar. However, Brix reduction in the permeate was between 14.5 and 41.85% and 12.11 and 26.52% for 1000 Da and 3500 Da membranes respectively. For the 200 Da and RO membranes the Brix in the concentrate was increased from 7.65 to 12.3 after 3 hours of operation for the 200 Da membrane at a TMP of 10 bar, whilst the Brix in the concentrate was increased from 15.65 to 27.6 after 3 hours of operation for the RO membrane at a TMP of 35 bar. Overall, UF membranes were found to be unsuitable for clarification of sugar cane juice since significant amount of Brix is reduced in the permeate, whilst RO membranes were found to be effective for concentration of sugar cane juice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colour removal and the flux behaviour of nanofiltration (NF-DOW FILMTEC-NF245) and forward osmosis (FO-a flat sheet cellulose triacetate membrane with a woven embedded backing support) membranes were investigated in this study. The NF membrane was employed to perform dye removal experiments with aqueous solutions containing 15 g/L of NaCl and different concentrations of Acid Green 25, Remazol Brilliant Orange FR and Remazol Blue BR dyes. The increase in dye concentration resulted in a decline in water permeability and an increase in colour removal. When the concentrations of dye solutions varied from 250 to 1000 mg/L, at 0.8 bar of trans-membrane pressure, the NF system exhibited a steady permeate flux of more 30 L/m2h and a colour removal of more than 99%; salt rejection was more than 20.0%. Furthermore, the FO system possessed high dye rejection efficiency (almost 100%), with low permeate flux of around 2.0 L/m2h, when using dye solutions as feed streams and seawater as draw stream. The mode of operation (either FO or pressure retarded osmosis (PRO) did not change the flux significantly but PRO mode always produced higher fluxes than FO mode under the operating conditions used in this study. While both NF and FO can be used to reduce the volume of effluent containing dyes from textile industries, the energy spent in NF on applied pressure can be substituted by the osmotic pressure of draw solution in FO when concentrated draw solutions such as sea water or reverse osmosis concentrate are readily available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, a two-step membrane filtration process was developed using a lab scale tangential flow filtration (TFF) unit with 10 kDa MWCO regenerated cellulose (RC) and polyethersulfone (PES)membranes at three different transmembrane pressure (TMP) of 1.5 bar, 2.0 bar and 2.5 bar. Two modes of filtrations were studied, with and without cleaning of membranes prior to UF-2. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effectively retained by the membrane in UF-2. Flux of permeates, rejection coefficient (R) of surfactin and proteinwere measured during the filtrations. Overall the three different TMPs applied have no significant effect in the filtrations and PES is the more suitable membrane to selectively separate surfactin from fermentation broth, achieving high recovery and level of purity. In addition this two-step UF process is scalable for larger volume of samples without affecting the original functionality of surfactin, although membranes permeability can be affected due to exposure to methanolic solution used in UF-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recirculating aquaculture systems (RAS) are essential for the reduction in fresh water usage as well as the discharge of nutrients along with aquaculture effluents. A RAS consisting of an anoxic reactor, a membrane bioreactor (MBR) and a UV-disinfection unit was used to process 10,000 L/d of aquaculture effluent providing high-quality treated water for recirculation to a Barramundi fish culture. The system maintained low levels of nitrate (<20 mg/L), nitrite (<3 mg/L) and ammonia (<0.6 mg/L) in the fish tank. Permeate from the membrane that was recirculated to the fish tank contained <21 mg/L of nitrate, <2 mg/L of nitrite and 0 mg/L of ammonia. However, the rate of fouling of the membrane in the MBR was around 1.47 kPa/d, and the membrane in the MBR required cleaning due to fouling after 16 days. Cleaning of the membrane was initiated when the TMP reached around 25 to 30 kPa. In order to reduce the rate of fouling, 500 mg of powdered activated carbon (PAC) per litre of MBR volume was introduced, which decreased the rate of fouling to 0.90 kPa/d. Cleaning of membrane was needed only after 31 days of operation while maintaining the treated effluent quality. Thus the frequency of cleaning could be halved due to the introduction of PAC into the MBR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trans-activator of transcription (TAT) peptide is regarded as the “gold standard” for cell-penetrating peptides, capable of traversing a mammalian membrane passively into the cytosolic space. This characteristic has been exploited through conjugation of TAT for applications such as drug delivery. However, the process by which TAT achieves membrane penetration remains ambiguous and unresolved. Mechanistic details of TAT peptide action are revealed herein by using three complementary methods: quartz crystal microbalance with dissipation (QCM-D), scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). When combined, these three scales of measurement define that the membrane uptake of the TAT peptide is by trans-membrane insertion using a “worm-hole” pore that leads to ion permeability across the membrane layer. AFM data provided nanometre-scale visualisation of TAT punctuation using a mammalian-mimetic membrane bilayer. The TAT peptide does not show the same specificity towards a bacterial mimetic membrane and QCM-D and SECM showed that the TAT peptide demonstrates a disruptive action towards these membranes. This investigation supports the energy-independent uptake of the cationic TAT peptide and provides empirical data that clarify the mechanism by which the TAT peptide achieves its membrane activity. The novel use of these three biophysical techniques provides valuable insight into the mechanism for TAT peptide translocation, which is essential for improvements in the cellular delivery of TAT-conjugated cargoes including therapeutic agents required to target specific intracellular locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The availability of a significant number of the Structures of helical membrane proteins has prompted us to investigate the mode of helix-helix packing. In the present study, we have considered a dataset of alpha-helical membrane proteins representing Structures solved from all the known superfamilies. We have described the geometry of all the helical residues in terms of local coordinate axis at the backbone level. Significant inter-helical interactions have been considered as contacts by weighing the number of atom-atom contacts, including all the side-chain atoms. Such a definition of local axis and the contact criterion has allowed us to investigate the inter-helical interaction in a systematic and quantitative manner. We show that a single parameter (designated as alpha), which is derived from the parameters representing the Mutual orientation of local axes, is able to accurately Capture the details of helix-helix interaction. The analysis has been carried Out by dividing the dataset into parallel, anti-parallel, and perpendicular orientation of helices. The study indicates that a specific range of alpha value is preferred for interactions among the anti-parallel helices. Such a preference is also seen among interacting residues of parallel helices, however to a lesser extent. No such preference is seen in the case of perpendicular helices, the contacts that arise mainly due to the interaction Of Surface helices with the end of the trans-membrane helices. The Study Supports the prevailing view that the anti-parallel helices are well packed. However, the interactions between helices of parallel orientation are non-trivial. The packing in alpha-helical membrane proteins, which is systematically and rigorously investigated in this study, may prove to be useful in modeling of helical membrane proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because so little is known about the structure of membrane proteins, an attempt has been made in this work to develop techniques by which to model them in three dimensions. The procedures devised rely heavily upon the availability of several sequences of a given protein. The modelling procedure is composed of two parts. The first identifies transmembrane regions within the protein sequence on the basis of hydrophobicity, β-turn potential, and the presence of certain amino acid types, specifically, proline and basic residues. The second part of the procedure arranges these transmembrane helices within the bilayer based upon the evolutionary conservation of their residues. Conserved residues are oriented toward other helices and variable residues are positioned to face the surrounding lipids. Available structural information concerning the protein's helical arrangement, including the lengths of interhelical loops, is also taken into account. Rhodopsin, band 3, and the nicotinic acetylcholine receptor have all been modelled using this methodology, and mechanisms of action could be proposed based upon the resulting structures.

Specific residues in the rhodopsin and iodopsin sequences were identified, which may regulate the proteins' wavelength selectivities. A hinge-like motion of helices M3, M4, and M5 with respect to the rest of the protein was proposed to result in the activation of transducin, the G-protein associated with rhodopsin. A similar mechanism is also proposed for signal transduction by the muscarinic acetylcholine and β-adrenergic receptors.

The nicotinic acetylcholine receptor was modelled with four trans-membrane helices per subunit and with the five homologous M2 helices forming the cation channel. Putative channel-lining residues were identified and a mechanism of channel-opening based upon the concerted, tangential rotation of the M2 helices was proposed.

Band 3, the anion exchange protein found in the erythrocyte membrane, was modelled with 14 transmembrane helices. In general the pathway of anion transport can be viewed as a channel composed of six helices that contains a single hydrophobic restriction. This hydrophobic region will not allow the passage of charged species, unless they are part of an ion-pair. An arginine residue located near this restriction is proposed to be responsible for anion transport. When ion-paired with a transportable anion it rotates across the barrier and releases the anion on the other side of the membrane. A similar process returns it to its original position. This proposed mechanism, based on the three-dimensional model, can account for the passive, electroneutral, anion exchange observed for band 3. Dianions can be transported through a similar mechanism with the additional participation of a histidine residue. Both residues are located on M10.