990 resultados para Trans-Activation (Genetics)
Resumo:
Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.
Resumo:
Human immunodeficiency virus (HIV)-encoded trans-activator (Tat) acts through the trans-activation response element RNA stem-loop to increase greatly the processivity of RNA polymerase II. Without Tat, transcription originating from the HIV promoter is attenuated. In this study, we demonstrate that transcriptional activation by Tat in vivo and in vitro requires the C-terminal domain (CTD) of RNA polymerase II. In contrast, the CTD is not required for basal transcription and for the formation of short, attenuated transcripts. Thus, trans-activation by Tat resembles enhancer-dependent activation of transcription. These results suggest that effects of Tat on the processivity of RNA polymerase II require proteins that are associated with the CTD and may result in the phosphorylation of the CTD.
Resumo:
Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to the human immunodeficiency virus (HIV) tat gene transcript inserted within the 3' region of the neomycin-resistance gene; RASH5, and LNHL-based virus containing an antisense sequence to the 5' leader region of HIV-1 downstream of the human cytomegalovirus promoter; and R20TAR, an LXSN-based virus with 20 tandem copies of the HIV-1 trans-activation response element sequence driven by the Moloney murine leukemia virus long terminal repeat. After G418 selection, transduced PBLs were challenged with the HIV-1 laboratory strain IIIB and a primary clinical isolate of HIV-1, 82H. Results showed that PBLs from different donors could be transduced and that this conferred resistance to HIV-1 infection. For each of the constructs, a reduction of approximately 70% in p24 antigen level relative to the corresponding control-vector-transduced PBLs was observed. Molecular analyses showed constitutive expression of all the transduced genes from the retroviral long terminal repeat, but no detectable transcript was seen from the internal human cytomegalovirus transcript was seen from the internal human cytomegalovirus promoter for the antisense construct. Transduction of, and consequent transgene expression in, PBLs did not impact on the surface expression of either CD4+/CD8+ (measured by flow cytometry) or on cell doubling time (examined by [3H]thymidine uptake). These results indicate the potential utility of these anti-HIV-1 gene therapeutic agents and show the preclinical value of this PBL assay system.
Resumo:
The trans-activation response element (TAR) found near the 5' end of the viral RNA of the human immunodeficiency virus contains a 3-nt bulge that is recognized by the virally encoded trans-activator protein (Tat), an important mediator of transcriptional activation. Insertion of the TAR bulge into double-stranded RNA is known to result in reduced electrophoretic mobility, suggestive of a bulge-induced bend. Furthermore, NMR studies indicate that Arg causes a change in the structure of the TAR bulge, possibly reducing the bulge angle. However, neither of these effects has been quantified, nor have they been compared with the effects of the TAR-Tat interaction. Recently, an approach for the quantification of bulge-induced bends has been described in which hydrodynamic measurements, employing the method of transient electric birefringence, have yielded precise estimates for the angles of a series of RNA bulges, with the angles ranging from 7 degrees to 93 degrees. In the current study, transient electric birefringence measurements indicate that the TAR bulge introduces a bend of 50 degrees +/- 5 degrees in the absence of Mg2+. Addition of Arg leads to essentially complete straightening of the helix (to < 10 degrees) with a transition midpoint in the 1 mM range. This transition demonstrates specificity for the TAR bulge: no comparable transition was observed for U3 or A3 (control) bulges with differing flanking sequences. An essentially identical structural transition is observed for the Tat-derived peptide, although the transition midpoint for the latter is near 1 microM. Finally, low concentrations of Mg2+ alone reduce the bend angle by approximately 50%, consistent with the effects of Mg2+ on other pyrimidine bulges. This last observation is important in view of the fact that most previous structural/binding studies were performed in the absence of Mg2+.
Resumo:
Background: The vast majority of BRCA1 missense sequence variants remain uncharacterised for their possible effect on protein expression and function, and therefore are unclassified in terms of their pathogenicity. BRCA1 plays diverse cellular roles and it is unlikely that any single functional assay will accurately reflect the total cellular implications of missense mutations in this gene. Objective: To elucidate the effect of two BRCA1 variants, 5236G>C (G1706A) and 5242C>A (A1708E) on BRCA1 function, and to survey the relative usefulness of several assays to direct the characterisation of other unclassified variants in BRCA genes. Methods and Results: Data from a range of bioinformatic, genetic, and histopathological analyses, and in vitro functional assays indicated that the 1708E variant was associated with the disruption of different cellular functions of BRCA1. In transient transfection experiments in T47D and 293T cells, the 1708E product was mislocalised to the cytoplasm and induced centrosome amplification in 293T cells. The 1708E variant also failed to transactivate transcription of reporter constructs in mammalian transcriptional transactivation assays. In contrast, the 1706A variant displayed a phenotype comparable to wildtype BRCA1 in these assays. Consistent with functional data, tumours from 1708E carriers showed typical BRCA1 pathology, while tumour material from 1706A carriers displayed few histopathological features associated with BRCA1 related tumours. Conclusions: A comprehensive range of genetic, bioinformatic, and functional analyses have been combined for the characterisation of BRCA1 unclassified sequence variants. Consistent with the functional analyses, the combined odds of causality calculated for the 1706A variant after multifactorial likelihood analysis (1:142) indicates a definitive classification of this variant as "benign". In contrast, functional assays of the 1708E variant indicate that it is pathogenic, possibly through subcellular mislocalisation. However, the combined odds of 262:1 in favour of causality of this variant does not meet the minimal ratio of 1000:1 for classification as pathogenic, and A1708E remains formally designated as unclassified. Our findings highlight the importance of comprehensive genetic information, together with detailed functional analysis for the definitive categorisation of unclassified sequence variants. This combination of analyses may have direct application to the characterisation of other unclassified variants in BRCA1 and BRCA2.
Resumo:
The nuclear peroxisome proliferator-activated receptors (PPARs) alpha, beta, and gamma activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. Activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel retardation experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase-dependent induction of PPARs but also their ligand-dependent induction, suggesting an interaction between both pathways that leads to maximal transcriptional induction by PPARs. Moreover, comparing PPAR alpha knockout (KO) with PPAR alpha WT mice, we show that the expression of the acyl CoA oxidase (ACO) gene can be regulated by PKA-activated PPAR alpha in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity, and we propose a model associating this pathway in the control of fatty acid beta-oxidation under conditions of fasting, stress, and exercise.
Resumo:
T cell factor-1 (TCF-1) and lymphoid enhancer-binding factor 1, the effector transcription factors of the canonical Wnt pathway, are known to be critical for normal thymocyte development. However, it is largely unknown if it has a role in regulating mature T cell activation and T cell-mediated immune responses. In this study, we demonstrate that, like IL-7Ralpha and CD62L, TCF-1 and lymphoid enhancer-binding factor 1 exhibit dynamic expression changes during T cell responses, being highly expressed in naive T cells, downregulated in effector T cells, and upregulated again in memory T cells. Enforced expression of a p45 TCF-1 isoform limited the expansion of Ag-specific CD8 T cells in response to Listeria monocytogenes infection. However, when the p45 transgene was coupled with ectopic expression of stabilized beta-catenin, more Ag-specific memory CD8 T cells were generated, with enhanced ability to produce IL-2. Moreover, these memory CD8 T cells expanded to a larger number of secondary effectors and cleared bacteria faster when the immunized mice were rechallenged with virulent L. monocytogenes. Furthermore, in response to vaccinia virus or lymphocytic choriomeningitis virus infection, more Ag-specific memory CD8 T cells were generated in the presence of p45 and stabilized beta-catenin transgenes. Although activated Wnt signaling also resulted in larger numbers of Ag-specific memory CD4 T cells, their functional attributes and expansion after the secondary infection were not improved. Thus, constitutive activation of the canonical Wnt pathway favors memory CD8 T cell formation during initial immunization, resulting in enhanced immunity upon second encounter with the same pathogen.
Resumo:
La protéine de fusion E2A-PBX1 induit une leucémie lymphoblastique aigüe des cellules B pédiatrique chez l’humain. E2A-PBX1 possède de puissantes propriétés de trans-activation et peut se lier à l’ADN ainsi qu’aux protéines homéotiques (HOX) via des domaines conservés dans sa portion PBX1, ce qui suggère qu’une dérégulation des gènes cibles de HOX/PBX1 contribue à la leucémogénèse. Précédemment, Bijl et al. (2008) ont démontré que certains gènes Hox collaborent de manière oncogénique avec E2A-PBX1, et que ces interactions sont cellules-spécifiques et varient en fonction du gène Hox impliqué. Une mutagénèse d’insertion provirale suggère et supporte la collaboration des gènes Hoxa et E2A-PBX1 lors de la leucémogénèse des cellules B. La présence de ces interactions dans les cellules B et leur implication dans l’induction des B-ALL est pertinente pour la compréhension de la maladie humaine, et reste encore mal comprise. Notre étude démontre qu’Hoxa9 confère un avantage prolifératif aux cellules B E2A-PBX1. Des expériences de transplantation à l’aide de cellules B E2A-PBX1/Hoxa9 positives isolées de chimères de moelle osseuse démontrent qu’Hoxa9 collabore avec E2A-PBX1 en contribuant à la transformation oncogénique des cellules, et qu’Hoxa9 seul n’induit aucune transformation. Une analyse par Q-RT-PCR nous a permis de démontrer une forte inhibition de gènes spécifiques aux cellules B dans les leucémies co-exprimant Hoxa9 et E2A-PBX1, en plus d’une activation de Flt3, suggérant une inhibition de la différenciation des cellules B accompagnée d’une augmentation de la prolifération. De plus, la surexpression de Hoxa9 dans des cellules leucémiques de souris transgéniques E2A-PBX1, confère aussi un avantage prolifératif aux cellules in vitro, qui semblent être influencé par une augmentation de l’expression de Flt3 et Pdgfδ. En conclusion, nous démontrons pour la première fois à l’aide d’un modèle murin qu’Hoxa9 collabore avec E2A-PBX1 lors de la transformation oncogénique des cellules B et que la signalisation via Flt3 est impliquée, ce qui est potentiellement pertinent pour la maladie humaine.
Resumo:
Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.
Resumo:
The NR4A1-3 (Nur77, NURR1 and NOR-1) subfamily of nuclear hormone receptors (NRs) has been implicated in Parkinson's disease, schizophrenia, manic depression, atherogenesis, Alzheimer's disease, rheumatoid arthritis, cancer and apoptosis. This has driven investigations into the mechanism of action, and the identification of small molecule regulators, that may provide the platform for pharmaceutical and therapeutic exploitation. Recently, we found that the purine antimetabolite 6-Mercaptopurine (6-MP), which is widely used as an anti-neoplastic and anti-inflammatory drug, modulated the NR4A1-3 subfamily. Interestingly, the agonist-mediated activation did not involve modulation of primary coactivators' (e.g. p300 and SRC-2/GRIP-1) activity and/or recruitment. However, the role of the subsequently recruited coactivators, for example CARM-1 and TRAP220, in 6-MP-mediated activation of the NR4A1-3 subfamily remains obscure. In this study we demonstrate that 6-MP modulates the activity of the coactivator TRAP220 in a dose-dependent manner. Moreover, we demonstrate that TRAP220 potentiates NOR-1-mediated transactivation, and interacts with the NR4A1-3 subgroup in an AF-1-dependent manner in a cellular context. The region of TRAP220 that mediated 6-MP activation and NR4A interaction was delimited to amino acids 1-800, and operates independently of the critical PKC and PKA phosphorylation sites. Interestingly, TRAP220 expression does not increase the relative induction by 6-MP, however the absolute level of NOR-1-mediated trans-activation is increased. This study demonstrates that 6-MP modulates the activity of the NR4A subgroup, and the coactivator TRAP220.
Resumo:
Fibrodysplasia Ossificans Progressiva (FOP) is a rare, heritable condition typified by progression of extensive ossification within skeletal muscle, ligament and tendon together with defects in skeletal development. The condition is easily diagnosed by the presence of shortened great toes and there is severe advancement of disability with age. FOP has been shown to result from a point mutation (c.617G>A) in the ACVR1 gene in almost all patients reported. Very recently two other mutations have been described in three FOP patients. We present here evidence for two further unique mutations (c.605G>T and c.983G>A) in this gene in two FOP patients with some atypical digit abnormalities and other clinical features. The observation of disparate missense mutations mapped to the GS and kinase domains of the protein supports the disease model of mild kinase activation and provides a potential rationale for phenotypic variation. © 2009 Petrie et al.
Resumo:
Human platelet-derived growth factor (PDGF) is composed of two polypeptide chains, PDGF-1 and PDGF-2,the human homolog of the v-sis oncogene. Deregulation of PDGF-2 expression can confer a growth advantage to cells possessing the cognate receptor and, thus, may contribute to the malignant phenotype. We investigated the regulation of PDGF-2 mRNA expression during megakaryocytic differentiation of K562 cells. Induction by 12-O-tetradecanoylphorbol-13-acetate (TPA) led to a greater than 200-fold increase in PDGF-2 transcript levels in these cells. Induction was dependent on protein synthesis and was not enhanced by cycloheximide exposure.In our initial investigation of the PDGF-2 promoter, a minimal promoter region, which included sequences extending only 42 base pairs upstream of the TATA signal, was found to be as efficient as 4 kilobase pairs upstream of the TATA signal in driving expression of a reporter gene in uninduced K562 cells. We also functionally identified different regulatory sequence elements of the PDGF-2 promoter in TPA-induced K562 cells. One region acted as a transcriptional silencer, while another region was necessary for maximal activity of the promoter in megakaryoblasts. This region was shown to bind nuclear factors and was the target for trans-activation in normal and tumor cells. In one tumor cell line, which expressed high PDGF-2 mRNA levels, the presence of the positive regulatory region resulted in a 30-fold increase in promoter activity. However, the ability of the minimal PDGF-2 promoter to drive reporter gene expression in uninduced K562 cells and normal fibroblasts, which contained no detectable PDGF-2 transcripts, implies the existence of other negative control mechanisms beyond the regulation of promoter activity.
Resumo:
Notch signaling acts in many diverse developmental spatial patterning processes. To better understand why this particular pathway is employed where it is and how downstream feedbacks interact with the signaling system to drive patterning, we have pursued three aims: (i) to quantitatively measure the Notch system's signal input/output (I/O) relationship in cell culture, (ii) to use the quantitative I/O relationship to computationally predict patterning outcomes of downstream feedbacks, and (iii) to reconstitute a Notch-mediated lateral induction feedback (in which Notch signaling upregulates the expression of Delta) in cell culture. The quantitative Notch I/O relationship revealed that in addition to the trans-activation between Notch and Delta on neighboring cells there is also a strong, mutual cis-inactivation between Notch and Delta on the same cell. This feature tends to amplify small differences between cells. Incorporating our improved understanding of the signaling system into simulations of different types of downstream feedbacks and boundary conditions lent us several insights into their function. The Notch system converts a shallow gradient of Delta expression into a sharp band of Notch signaling without any sort of feedback at all, in a system motivated by the Drosophila wing vein. It also improves the robustness of lateral inhibition patterning, where signal downregulates ligand expression, by removing the requirement for explicit cooperativity in the feedback and permitting an exceptionally simple mechanism for the pattern. When coupled to a downstream lateral induction feedback, the Notch system supports the propagation of a signaling front across a tissue to convert a large area from one state to another with only a local source of initial stimulation. It is also capable of converting a slowly-varying gradient in parameters into a sharp delineation between high- and low-ligand populations of cells, a pattern reminiscent of smooth muscle specification around artery walls. Finally, by implementing a version of the lateral induction feedback architecture modified with the addition of an autoregulatory positive feedback loop, we were able to generate cells that produce enough cis ligand when stimulated by trans ligand to themselves transmit signal to neighboring cells, which is the hallmark of lateral induction.
Resumo:
The eleven-nineteen lysine-rich leukemia (ELL) gene undergoes translocation and fuses in-frame to the multiple lineage leukemia gene in a substantial proportion of patients suffering from acute forms of leukemia. Studies show that ELL indirectly modulates transcription by serving as a regulator for transcriptional elongation as well as for p53, U19/Eaf2, and steroid receptor activities. Our in vitro and in vivo data demonstrate that ELL could also serve as a transcriptional factor to directly induce transcription of the thrombospondin-1 (TSP-1) gene. Experiments using ELL deletion mutants established that full-length ELL is required for the TSP-1 up-regulation and that the trans-activation domain likely resides in the carboxyl terminus. Moreover, the DNA binding domain may localize to the first 45 amino acids of ELL. Not surprisingly, multiple lineage leukemia-ELL, which lacks these amino acids, did not induce expression from the TSP-1 promoter. In addition, the ELL core-response element appears to localize in the -1426 to -1418 region of the TSP-1 promoter. Finally, studies using zebrafish confirmed that ELL regulates TSP-1 mRNA expression in vivo, and ELL could inhibit zebrafish vasculogenesis, at least in part, through up-regulating TSP-1. Given the importance of TSP-1 as an anti-angiogenic protein, our findings may have important ramifications for better understanding cancer.