984 resultados para Trajectory analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an innovative approach for behaviour recognition, from a multicamera environment, based on translating video activity into semantics. First, we fuse tracks from individual cameras through clustering employing soft computing techniques. Then, we introduce a higher-level module able to translate fused tracks into semantic information. With our proposed approach, we address the challenge set in PETS 2014 on recognising behaviours of interest around a parked vehicle, namely the abnormal behaviour of someone walking around the vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated human behaviour analysis has been, and still remains, a challenging problem. It has been dealt from different points of views: from primitive actions to human interaction recognition. This paper is focused on trajectory analysis which allows a simple high level understanding of complex human behaviour. It is proposed a novel representation method of trajectory data, called Activity Description Vector (ADV) based on the number of occurrences of a person is in a specific point of the scenario and the local movements that perform in it. The ADV is calculated for each cell of the scenario in which it is spatially sampled obtaining a cue for different clustering methods. The ADV representation has been tested as the input of several classic classifiers and compared to other approaches using CAVIAR dataset sequences obtaining great accuracy in the recognition of the behaviour of people in a Shopping Centre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This papers examines the use of trajectory distance measures and clustering techniques to define normal
and abnormal trajectories in the context of pedestrian tracking in public spaces. In order to detect abnormal
trajectories, what is meant by a normal trajectory in a given scene is firstly defined. Then every trajectory
that deviates from this normality is classified as abnormal. By combining Dynamic Time Warping and a
modified K-Means algorithms for arbitrary-length data series, we have developed an algorithm for trajectory
clustering and abnormality detection. The final system performs with an overall accuracy of 83% and 75%
when tested in two different standard datasets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past few years, technological breakthroughs have helpedcompetitive sports to attain new levels. Training techniques, athletes' management and methods to analyse specific technique and performancehave sharpened, leading to performance improvement. Alpine skiing is not different. The objective of the present work was to study the technique of highy skilled alpine skiers performing giant slalom, in order to determine the quantity of energy that can be produced by skiers to increase their speed. To reach this goal, several tools have been developed to allow field testing on ski slopes; a multi cameras system, a wireless synchronization system, an aerodynamic drag model and force plateforms have especially been designed and built. The analyses performed using the different tools highlighted the possibility for several athletes to increase their energy by approximately 1.5 % using muscular work. Nevertheless, the athletes were in average not able to use their muscular work in an efficient way. By offering functional tools such as drift analysis using combined data from GPS and inertial sensors, or trajectory analysis based on tracking morphological points, this research makes possible the analysis of alpine skiers technique and performance in real training conditions. The author wishes for this work to be used as a basis for continued knowledge and understanding of alpine skiing technique. - Le sport de compétition bénéficie depuis quelques années des progrès technologiques apportés par la science. Les techniques d'entraînement, le suivi des athlètes et les méthodes d'analyse deviennent plus pointus, induisant une nette amélioration des performances. Le ski alpin ne dérogeant pas à cette règle, l'objectif de ce travail était d'analyser la technique de skieurs de haut niveau en slalom géant afin de déterminer la quantité d'énergie fournie par les skieurs pour augmenter leur vitesse. Pour ce faire, il a été nécessaire de developer différents outils d'analyse adaptés aux contraintes inhérentes aux tests sur les pistes de skis; un système multi caméras, un système de synchronisation, un modèle aérodynamique et des plateformes de force ont notamment été développés. Les analyses effectuées grâce à ces différents outils ont montré qu'il était possible pour certains skieur d'augmenter leur énergie d'environ 1.5 % grâce au travail musculaire. Cependant, les athlètes n'ont en moyenne pas réussi à utiliser leur travail musculaire de manière efficace. Ce projet a également rendu possible des analyses adaptées aux conditions d'entraînement des skieurs en proposant des outils fonctionnels tels que l'analyse du drift grâce à des capteurs inertiels et GPS, ainsi que l'analyse simplifiée de trajectoires grâce au suivi de points morphologiques. L'auteur espère que ce travail servira de base pour approfondir les connaissances de la technique en ski alpin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microsecond long Molecular Dynamics (MD) trajectories of biomolecular processes are now possible due to advances in computer technology. Soon, trajectories long enough to probe dynamics over many milliseconds will become available. Since these timescales match the physiological timescales over which many small proteins fold, all atom MD simulations of protein folding are now becoming popular. To distill features of such large folding trajectories, we must develop methods that can both compress trajectory data to enable visualization, and that can yield themselves to further analysis, such as the finding of collective coordinates and reduction of the dynamics. Conventionally, clustering has been the most popular MD trajectory analysis technique, followed by principal component analysis (PCA). Simple clustering used in MD trajectory analysis suffers from various serious drawbacks, namely, (i) it is not data driven, (ii) it is unstable to noise and change in cutoff parameters, and (iii) since it does not take into account interrelationships amongst data points, the separation of data into clusters can often be artificial. Usually, partitions generated by clustering techniques are validated visually, but such validation is not possible for MD trajectories of protein folding, as the underlying structural transitions are not well understood. Rigorous cluster validation techniques may be adapted, but it is more crucial to reduce the dimensions in which MD trajectories reside, while still preserving their salient features. PCA has often been used for dimension reduction and while it is computationally inexpensive, being a linear method, it does not achieve good data compression. In this thesis, I propose a different method, a nonmetric multidimensional scaling (nMDS) technique, which achieves superior data compression by virtue of being nonlinear, and also provides a clear insight into the structural processes underlying MD trajectories. I illustrate the capabilities of nMDS by analyzing three complete villin headpiece folding and six norleucine mutant (NLE) folding trajectories simulated by Freddolino and Schulten [1]. Using these trajectories, I make comparisons between nMDS, PCA and clustering to demonstrate the superiority of nMDS. The three villin headpiece trajectories showed great structural heterogeneity. Apart from a few trivial features like early formation of secondary structure, no commonalities between trajectories were found. There were no units of residues or atoms found moving in concert across the trajectories. A flipping transition, corresponding to the flipping of helix 1 relative to the plane formed by helices 2 and 3 was observed towards the end of the folding process in all trajectories, when nearly all native contacts had been formed. However, the transition occurred through a different series of steps in all trajectories, indicating that it may not be a common transition in villin folding. The trajectories showed competition between local structure formation/hydrophobic collapse and global structure formation in all trajectories. Our analysis on the NLE trajectories confirms the notion that a tight hydrophobic core inhibits correct 3-D rearrangement. Only one of the six NLE trajectories folded, and it showed no flipping transition. All the other trajectories get trapped in hydrophobically collapsed states. The NLE residues were found to be buried deeply into the core, compared to the corresponding lysines in the villin headpiece, thereby making the core tighter and harder to undo for 3-D rearrangement. Our results suggest that the NLE may not be a fast folder as experiments suggest. The tightness of the hydrophobic core may be a very important factor in the folding of larger proteins. It is likely that chaperones like GroEL act to undo the tight hydrophobic core of proteins, after most secondary structure elements have been formed, so that global rearrangement is easier. I conclude by presenting facts about chaperone-protein complexes and propose further directions for the study of protein folding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our previously developed stochastic trajectory analysis technique has been applied to the calculation of first-passage time statistics of bound processes. Explicit results are obtained for linearly bound processes driven by dichotomous fluctuations having exponential and rectangular temporal distributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stochastic-trajectory-analysis technique is applied to the calculation of the mean¿first-passage-time statistics for processes driven by external shot noise. Explicit analytical expressions are obtained for free and bound processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated postural control (PC) effects of a mountain ultra-marathon (MUM): a 330-km trail run with 24000 m of positive and negative change in elevation. PC was assessed prior to (PRE), during (MID) and after (POST) the MUM in experienced ultra-marathon runners (n = 18; finish time = 126+/-16 h) and in a control group (n = 8) with a similar level of sleep deprivation. Subjects were instructed to stand upright on a posturographic platform over a period of 51.2 seconds using a double-leg stance under two test conditions: eyes open (EO) and eyes closed (EC). Traditional measures of postural stability (center of pressure trajectory analysis) and stabilogram-diffusion analysis (SDA) parameters were analysed. For the SDA, a significantly greater short-term effective diffusion was found at POST compared with PRE in the medio-lateral (ML; Dxs) and antero-posterior (AP) directions (Dys) in runners (p<0.05) The critical time interval (Ctx) in the ML direction was significantly higher at MID (p<0.001) and POST (p<0.05) than at PRE in runners. At MID (p<0.001) and POST (p<0.05), there was a significant difference between the two groups. The critical displacement (Cdx) in the ML was significantly higher at MID and at POST (p<0.001) compared with PRE for runners. A significant difference in Cdx was observed between groups in EO at MID (p<0.05) and POST (p<0.005) in the ML direction and in EC at POST in the ML and AP directions (p<0.05). Our findings revealed significant effects of fatigue on PC in runners, including, a significant increase in Ctx (critical time in ML plan) in EO and EC conditions. Thus, runners take longer to stabilise their body at POST than at MID. It is likely that the mountainous characteristics of MUM (unstable ground, primarily uphill/downhill running, and altitude) increase this fatigue, leading to difficulty in maintaining balance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary: An applied viewpoint to the trajectory analysis method

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The processes and sources that regulate the elemental composition of aerosol particles were investigated in both fine and coarse modes during the dry and wet seasons. One hundred and nine samples were collected from the biological reserve Cuieiras - Manaus from February to October 2008, and analyzed together with 668 samples that were previously collected at Balbina from 1998 to 2002. Particle induced X-ray emission technique was used to determine the elemental composition, while the concentration of black carbon was obtained from the measurement of optical reflectance. Absolute principal factor analysis and positive matrix factorization were performed for source apportionment, which was complemented with back trajectory analysis. A regional identity for the natural biogenic aerosol was found for the Central Amazon Basin and can be used in dynamical chemical region models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette étude aborde le thème de l’utilisation des modèles de mélange de lois pour analyser des données de comportements et d’habiletés cognitives mesurées à plusieurs moments au cours du développement des enfants. L’estimation des mélanges de lois multinormales en utilisant l’algorithme EM est expliquée en détail. Cet algorithme simplifie beaucoup les calculs, car il permet d’estimer les paramètres de chaque groupe séparément, permettant ainsi de modéliser plus facilement la covariance des observations à travers le temps. Ce dernier point est souvent mis de côté dans les analyses de mélanges. Cette étude porte sur les conséquences d’une mauvaise spécification de la covariance sur l’estimation du nombre de groupes formant un mélange. La conséquence principale est la surestimation du nombre de groupes, c’est-à-dire qu’on estime des groupes qui n’existent pas. En particulier, l’hypothèse d’indépendance des observations à travers le temps lorsque ces dernières étaient corrélées résultait en l’estimation de plusieurs groupes qui n’existaient pas. Cette surestimation du nombre de groupes entraîne aussi une surparamétrisation, c’est-à-dire qu’on utilise plus de paramètres qu’il n’est nécessaire pour modéliser les données. Finalement, des modèles de mélanges ont été estimés sur des données de comportements et d’habiletés cognitives. Nous avons estimé les mélanges en supposant d’abord une structure de covariance puis l’indépendance. On se rend compte que dans la plupart des cas l’ajout d’une structure de covariance a pour conséquence d’estimer moins de groupes et les résultats sont plus simples et plus clairs à interpréter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le début de l’adolescence est une période de changements rapides où la détresse psychologique et l’expérimentation de la marijuana sont choses fréquentes. Certaines études longitudinales ont démontré que ces deux phénomènes ont tendance à se manifester conjointement tandis que d’autres n’ont pu observer de tel lien. Ces résultats divergents suggèrent que plusieurs questions persistent concernant la nature de cette relation. Cette thèse a pour objectif d’explorer la consommation de marijuana et la détresse psychologique en début d’adolescence afin de mieux saisir les changements à travers le temps, ainsi que d’examiner si ces deux problématiques évoluent conjointement et s’influencent réciproquement. Un échantillon de 448 adolescents garçons et filles fréquentant deux écoles secondaires de Montréal, ont été suivi de secondaire I à secondaire III. De 1999 à 2001, les participants ont complété un questionnaire à chaque année de l’étude incluant des mesures portant sur la consommation de marijuana et la détresse psychologique (IDPESQ-14). Un modèle de mixture semi-paramétrique (Nagin, 2005) a été utilisé afin d’identifier les trajectoires développementales de la consommation de marijuana et de détresse psychologique. Des analyses ont également été effectuées afin d’établir les liens d’appartenance entre chacune des trajectoires de consommation identifiées et la détresse psychologique lors de la première année de l`étude, ainsi qu’entre chacune des trajectoires de détresse psychologique et la consommation de marijuana en première année du secondaire. Finalement, des analyses de trajectoires jointes ont été effectuées afin de déterminer l’interrelation entre la consommation de marijuana et la détresse psychologique. Les résultats de notre étude suggèrent qu’il existe une grande hétérogénéité au niveau de la consommation de marijuana et la détresse psychologique. Trois trajectoires développementales ont été identifiées pour la consommation de marijuana: consommation légère, consommation grandissante et consommation élevée et stable. Trois trajectoires ont également été observées pour la détresse psychologique : basse, moyenne et élevée. Nos résultats démontrent la présence d’un lien entre la détresse psychologique rapportée lors de la première année de l’étude et les trajectoires de consommation problématiques. Ce lien a également été observé entre la consommation de marijuana rapportée lors de première année de l’étude et les trajectoires problématiques de détresse psychologique. Les analyses de trajectoires jointes démontrent la présence d’une concordance entre la consommation de marijuana et la détresse psychologique. Cette interrelation est toutefois complexe puisque les trajectoires de détresse psychologique élevée sont associées à un niveau de consommation de marijuana plus problématique mais l’inverse de cette association est moins probable. Notre étude met en lumière la nature asymétrique de la concordance entre la consommation de marijuana et la détresse psychologique.