748 resultados para Training data
Resumo:
Training data for supervised learning neural networks can be clustered such that the input/output pairs in each cluster are redundant. Redundant training data can adversely affect training time. In this paper we apply two clustering algorithms, ART2 -A and the Generalized Equality Classifier, to identify training data clusters and thus reduce the training data and training time. The approach is demonstrated for a high dimensional nonlinear continuous time mapping. The demonstration shows six-fold decrease in training time at little or no loss of accuracy in the handling of evaluation data.
Resumo:
This study investigates face recognition with partial occlusion, illumination variation and their combination, assuming no prior information about the mismatch, and limited training data for each person. The authors extend their previous posterior union model (PUM) to give a new method capable of dealing with all these problems. PUM is an approach for selecting the optimal local image features for recognition to improve robustness to partial occlusion. The extension is in two stages. First, authors extend PUM from a probability-based formulation to a similarity-based formulation, so that it operates with as little as one single training sample to offer robustness to partial occlusion. Second, they extend this new formulation to make it robust to illumination variation, and to combined illumination variation and partial occlusion, by a novel combination of multicondition relighting and optimal feature selection. To evaluate the new methods, a number of databases with various simulated and realistic occlusion/illumination mismatches have been used. The results have demonstrated the improved robustness of the new methods.
Resumo:
In this paper we present a novel method for performing speaker recognition with very limited training data and in the presence of background noise. Similarity-based speaker recognition is considered so that speaker models can be created with limited training speech data. The proposed similarity is a form of cosine similarity used as a distance measure between speech feature vectors. Each speech frame is modelled using subband features, and into this framework, multicondition training and optimal feature selection are introduced, making the system capable of performing speaker recognition in the presence of realistic, time-varying noise, which is unknown during training. Speaker identi?cation experiments were carried out using the SPIDRE database. The performance of the proposed new system for noise compensation is compared to that of an oracle model; the speaker identi?cation accuracy for clean speech by the new system trained with limited training data is compared to that of a GMM trained with several minutes of speech. Both comparisons have demonstrated the effectiveness of the new model. Finally, experiments were carried out to test the new model for speaker identi?cation given limited training data and with differing levels and types of realistic background noise. The results have demonstrated the robustness of the new system.
Resumo:
This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.
Resumo:
This paper presents a novel method of audio-visual fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there is a limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new representation and a modified cosine similarity are introduced for combining and comparing bimodal features with limited training data as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal data set created from the SPIDRE and AR databases with variable noise corruption of speech and occlusion in the face images. The new method has demonstrated improved recognition accuracy.
Resumo:
Latest issue consulted: 1990 ed.
Resumo:
A simple technique is presented for improving the robustness of the n-tuple recognition method against inauspicious choices of architectural parameters, guarding against the saturation problem, and improving the utilisation of small data sets. Experiments are reported which confirm that the method significantly improves performance and reduces saturation in character recognition problems.
Resumo:
Purpose: To provide for the basis for collecting strength training data using a rigorously validated injury report form. Methods: A group of specialist designed a questionnaire of 45 item grouped into 4 dimensions. Six stages were used to assess face, content, and criterion validity of the weight training injury report form. A 13 members panel assessed the form for face validity, and an expert panel assessed it for content and criterion validity. Panel members were consulted until consensus was reached. A yardstick developed by an expert panel using Intraclass correlation technique was used to assess the reability of the form. Test-retest reliability was assessed with the intraclass correlation coefficient (ICC).The strength training injury report form was developed, and the face, content, and criterion validity successfully assessed. A six step protocol to create a yardstick was also developed to assist in the validation process. Both inter-rater and intra rater reliability results indicated a 98% agreement. Inter-rater reliability agreement of 98% for three injuries. Results: The Cronbach?s alpha of the questionnaire was 0.944 (pmenor que0.01) and the ICC of the entire questionnaire was 0.894 (pmenor que0.01). Conclusion: The questionnaire gathers together enough psychometric properties to be considered a valid and reliable tool for register injury data in strength training, and providing researchers with a basis for future studies in this area. Key Words: data collection; validation; injury prevention; strength training
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.