911 resultados para Trail-induced apoptosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mast cells (MC), supposedly long-lived cells, play a key role in allergy and are important contributors to other inflammatory conditions in which they undergo hyperplasia. In humans, stem cell factor (SCF) is the main regulator of MC growth, differentiation, and survival. Although human MC numbers may also be regulated by apoptotic cell death, there have been no reports concerning the role of the extrinsic apoptotic pathway mediated by death receptors in these cells. We examined expression and function of death receptors for Fas ligand and TRAIL in human MC. Although the MC leukemia cell line HMC-1 and human lung-derived MC expressed both Fas and TRAIL-R, MC lines derived from cord blood (CBMC) expressed only TRAIL-R. Activation of TRAIL-R resulted in caspase 3-dependent apoptosis of CBMC and HMC-1. IgE-dependent activation of CBMC increased their susceptibility to TRAIL-mediated apoptosis. Results suggest that TRAIL-mediated apoptosis may be a mechanism of regulating MC survival in vivo and, potentially, for down-regulating MC hyperplasia in pathologic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The death ligand members of the tumor necrosis factor (TNF) family are potent inducers of apoptosis in a variety of cell types. In particular, TNF-related apoptosis-inducing ligand (TRAIL) has recently received much scientific and commercial attention because of its potent tumor cell-killing activity while leaving normal untransformed cells mostly unaffected. Furthermore, TRAIL strongly synergizes with conventional chemotherapeutic drugs in inducing tumor cell apoptosis, making it a most promising candidate for future cancer therapy. Increasing evidence indicates, however, that TRAIL may also induce or modulate apoptosis in primary cells. A particular concern is the potential side effect of TRAIL-based tumor therapies in the liver. In this review we summarize some of the recent findings on the role of TRAIL in tumor cell and hepatocyte apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3 alpha or GSK-3 beta. In contrast, depletion of GSK-3 beta, but not GSK-3 alpha, sensitized PDA cell lines to TNF alpha-induced cell death. Further experiments demonstrated that TNF alpha-stimulated I kappa B alpha phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3 beta-deficient MEFs. Nonetheless, inhibition of GSK-3 beta function in MEFs or PDA cell lines impaired the expression of the NF-kappa B target genes Bcl-xL and cIAP2, but not I kappa B alpha. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3 beta targeted to the nucleus but not GSK-3 beta targeted to the cytoplasm, suggesting that GSK-3 beta regulates NF-kappa B function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3 beta overexpression and nuclear localization contribute to TNF alpha and TRAIL resistance via anti-apoptotic NF-kappa B genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) is characterized by an aggressive phenotype and acquired resistance to a broad spectrum of anticancer agents. TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising candidate for safe and selective induction of tumor cell apoptosis without toxicity to normal tissues. Here we report that TRAIL failed to induce apoptosis in SCLC cells and instead resulted in an up to 40% increase in proliferation. TRAIL-induced SCLC cell proliferation was mediated by extracellular signal-regulated kinase 1 and 2, and dependent on the expression of surface TRAIL-receptor 2 (TRAIL-R2) and lack of caspase-8, which is frequent in SCLC. Treatment of SCLC cells with interferon-gamma (IFN-gamma) restored caspase-8 expression and facilitated TRAIL-induced apoptosis. The overall loss of cell proliferation/viability upon treatment with the IFN-gamma-TRAIL combination was 70% compared to TRAIL-only treated cells and more than 30% compared to untreated cells. Similar results were obtained by transfection of cells with a caspase-8 gene construct. Altogether, our data suggest that TRAIL-R2 expression in the absence of caspase-8 is a negative determinant for the outcome of TRAIL-based cancer therapy, and provides the rationale for using IFN-gamma or other strategies able to restore caspase-8 expression to convert TRAIL from a pro-survival into a death ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy-induced interleukin-8 (IL-8) signaling reduces the sensitivity of prostate cancer cells to undergo apoptosis. In this study, we investigated how endogenous and drug-induced IL-8 signaling altered the extrinsic apoptosis pathway by determining the sensitivity of LNCaP and PC3 cells to administration of the death receptor agonist tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induced concentration-dependent decreases in LNCaP and PC3 cell viability, coincident with increased levels of apoptosis and the potentiation of IL-8 secretion. Administration of recombinant human IL-8 was shown to increase the mRNA transcript levels and expression of c+FLIPL and c-FLIPS, two isoforms of the endogenous caspase-8 inhibitor. Pretreatment with the CXCR2 antagonist AZ10397767 significantly attenuated IL-8-induced c-FLIP mRNA up-regulation whereas inhibition of androgen receptor- and/or nuclear factor-kappa B-mediated transcription attenuated IL-8-induced c-FLIP expression in LNCaP and PC3 cells, respectively. Inhibition of c-FLIP expression was shown to induce spontaneous apoptosis in both cell lines and to sensitize these prostate cancer cells to treatment with TRAIL, oxaliplatin, and docetaxel. Coadministration of AZ10397767 also increased the sensitivity of PC3 cells to the apoptosis-inducing effects of recombinant TRAIL, most likely due to the ability of this antagonist to block TRAIL- and IL-8-induced up-regulation of c-FLIP in these cells. We conclude that endogenous and TRAIL-induced IL-8 signaling can modulate the extrinsic apoptosis pathway in prostate cancer cells through direct transcriptional regulation of c-FLIP. Therefore, targeted inhibition of IL-8 signaling or c-FLIP expression in prostate cancer may be an attractive therapeutic strategy to sensitize this stage of disease to chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.

Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.

Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.

Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytokine tumor-necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) has been shown to preferentially induce apoptosis in cancer cells. A previous study of our group demonstrated that non-small cell lung cancer cell lines can be sensitized to Apo2L/TRAIL-induced apoptosis by chemotherapeutic agents. The aim of the present study was the evaluation of these results in a model of primary culture of non-small cell lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is the fifth most common cancer with more than 50,000 cases diagnosed each year. Interferon-α (IFNα) is mostly used in combination with BCG for the treatment of transitional cell carcinoma (TCC). To examine the effects of IFNα on bladder cancer cells, I analyzed a panel of 20 bladder cancer cell lines in terms of their sensitivity to IFNα-induced apoptosis and the underlying mechanisms. I identified three categories: cells that die after 48hr, after 72h, and cells resistant even after 72hr of IFNα treatment. Examination of the IFN-signal transduction pathway revealed that the defect was not due to abrogation of IFN signaling. Further analysis demonstrated dependency of IFN-induced apoptosis on caspase-8, implicating the role of death receptors in IFN-induced cell death. Of the six most-IFN-sensitive cell lines, the majority upregulated Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) at the mRNA and protein level and IFN-induced cell death was mediated through TRAIL, while a minority of the most IFN-sensitive cells undergo apoptosis through a TNFα-dependent mechanism. IFNα resistance was due to either absence of TRAIL upregulation at the mRNA or protein level, resistance to exogenous rhTRAIL itself or lack of sensitization to IFN-induced cell death. Downregulation of XIAP, or XIAP inactivation through its regulator NFκB has been reported to sensitize tumor cells to death receptor-induced cell death. Baseline and IFN-inducible XIAP levels were examined in the most and least IFN-sensitive cells, knocking down XIAP and the p65 subunit of NFκB enhanced IFN-induced cell death, implicating XIAP downregulation as a mechanism through which bladder cancer cells are sensitized to IFN-induced apoptosis. To determine whether or not the proteasome inhibitor Bortezomib (BZ) sensitizes bladder cancer cells to IFN-induced cell death, the combined effects of IFN+BZ and the underlying molecular mechanisms were examined both in vitro and in vivo using two bladder xenograft models. In both models, tumor growth inhibition was the result of either increased cell death of tumor cells exerted by the two agents and/or inhibition of angiogenesis. In vitro, MAP downregulation in response to the combined treatment of IFN+BZ accounts for one of the mechanisms mediating IFN+BZ cell death in bladder cancer cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis is essential for the maintenance of inherited genomic integrity. During DNA damage-induced apoptosis, mechanisms of cell survival, such as DNA repair are inactivated to allow cell death to proceed. Here, we describe a role for the mammalian DNA repair enzyme Exonuclease 1 (Exo1) in DNA damage-induced apoptosis. Depletion of Exo1 in human fibroblasts, or mouse embryonic fibroblasts led to a delay in DNA damage-induced apoptosis. Furthermore, we show that Exo1 acts upstream of caspase-3, DNA fragmentation and cytochrome c release. In addition, induction of apoptosis with DNA-damaging agents led to cleavage of both isoforms of Exo1. The cleavage of Exo1 was mapped to Asp514, and shown to be mediated by caspase-3. Expression of a caspase-3 cleavage site mutant form of Exo1, Asp514Ala, prevented formation of the previously observed fragment without any affect on the onset of apoptosis. We conclude that Exo1 has a role in the timely induction of apoptosis and that it is subsequently cleaved and degraded during apoptosis, potentially inhibiting DNA damage repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The induction of apoptosis in thymocytes by the glucocorticoid dexamethasone was used as a model system to investigate whether there are changes in 20 S and 26 S proteasome activities during apoptosis. We observed that thymocytes contain high concentrations of proteasomes and that following treatment with dexamethasone, cell extracts showed a decrease in proteasome chymotrypsin-like activity which correlated with the degree of apoptosis observed. The decrease in chymotrypsin-like activity of 20 S and 26S proteasomes was still apparent after these complexes had been partially puri®ed from apoptotic thymocyte extracts and was therefore not due to competition resulting from a general increase in protein turnover. The trypsin-like and peptidylglutamylpeptide hydrolase activities of proteasome complexes were also observed to decrease during apoptosis, but these decreases were reversed by the inhibition of apoptosis by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-¯uoromethylketone. However, the chymotrypsin-like activity of proteasomes decreased further in the presence of the apoptosis inhibitor. Val-Ala-Asp-¯uoromethylketone was found to inhibit the chymotrypsin- and trypsin-like activity of 26 S proteasomes in .itro. The decrease in proteasome activities in apoptosis did not appear to be due to a decrease in the concentration of total cellular proteasomes. Thus, the early decreases in 20 S and 26 S proteasome activities during apoptosis appear to be due to a down-regulation of their proteolytic activities and not to a decrease in their protein concentration. These data suggest that proteasomes may be responsible, in thymocytes, for the turnover of a protein that functions as a positive regulator of apoptosis.