960 resultados para Traffic analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many existing encrypted Internet protocols leak information through packet sizes and timing. Though seemingly innocuous, prior work has shown that such leakage can be used to recover part or all of the plaintext being encrypted. The prevalence of encrypted protocols as the underpinning of such critical services as e-commerce, remote login, and anonymity networks and the increasing feasibility of attacks on these services represent a considerable risk to communications security. Existing mechanisms for preventing traffic analysis focus on re-routing and padding. These prevention techniques have considerable resource and overhead requirements. Furthermore, padding is easily detectable and, in some cases, can introduce its own vulnerabilities. To address these shortcomings, we propose embedding real traffic in synthetically generated encrypted cover traffic. Novel to our approach is our use of realistic network protocol behavior models to generate cover traffic. The observable traffic we generate also has the benefit of being indistinguishable from other real encrypted traffic further thwarting an adversary's ability to target attacks. In this dissertation, we introduce the design of a proxy system called TrafficMimic that implements realistic cover traffic tunneling and can be used alone or integrated with the Tor anonymity system. We describe the cover traffic generation process including the subtleties of implementing a secure traffic generator. We show that TrafficMimic cover traffic can fool a complex protocol classification attack with 91% of the accuracy of real traffic. TrafficMimic cover traffic is also not detected by a binary classification attack specifically designed to detect TrafficMimic. We evaluate the performance of tunneling with independent cover traffic models and find that they are comparable, and, in some cases, more efficient than generic constant-rate defenses. We then use simulation and analytic modeling to understand the performance of cover traffic tunneling more deeply. We find that we can take measurements from real or simulated traffic with no tunneling and use them to estimate parameters for an accurate analytic model of the performance impact of cover traffic tunneling. Once validated, we use this model to better understand how delay, bandwidth, tunnel slowdown, and stability affect cover traffic tunneling. Finally, we take the insights from our simulation study and develop several biasing techniques that we can use to match the cover traffic to the real traffic while simultaneously bounding external information leakage. We study these bias methods using simulation and evaluate their security using a Bayesian inference attack. We find that we can safely improve performance with biasing while preventing both traffic analysis and defense detection attacks. We then apply these biasing methods to the real TrafficMimic implementation and evaluate it on the Internet. We find that biasing can provide 3-5x improvement in bandwidth for bulk transfers and 2.5-9.5x speedup for Web browsing over tunneling without biasing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de Mestrado (Programa Doutoral em Informática)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä diplomityössä on oletettu että neljännen sukupolven mobiiliverkko on saumaton yhdistelmä olemassa olevia toisen ja kolmannen sukupolven langattomia verkkoja sekä lyhyen kantaman WLAN- ja Bluetooth-radiotekniikoita. Näiden tekniikoiden on myös oletettu olevan niin yhteensopivia ettei käyttäjä havaitse saanti verkon muuttumista. Työ esittelee neljännen sukupolven mobiiliverkkoihin liittyvien tärkeimpien langattomien tekniikoiden arkkitehtuurin ja perustoiminta-periaatteet. Työ kuvaa eri tekniikoita ja käytäntöjä tiedon mittaamiseen ja keräämiseen. Saatuja transaktiomittauksia voidaan käyttää tarjottaessa erilaistettuja palvelutasoja sekä verkko- ja palvelukapasiteetin optimoimisessa. Lisäksi työssä esitellään Internet Business Information Manager joka on ohjelmistokehys hajautetun tiedon keräämiseen. Sen keräämää mittaustietoa voidaan käyttää palvelun tason seurannassa j a raportoinnissa sekä laskutuksessa. Työn käytännön osuudessa piti kehittää langattoman verkon liikennettä seuraava agentti joka tarkkailisi palvelun laatua. Agentti sijaitsisi matkapuhelimessa mitaten verkon liikennettä. Agenttia ei kuitenkaan voitu toteuttaa koska ohjelmistoympäristö todettiin vajaaksi. Joka tapauksessa työ osoitti että käyttäjän näkökulmasta tietoa kerääville agenteille on todellinen tarve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resource, Poster and Reference for the coursework

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mensurar os impactos do tráfego de aplicações interativas para TV Digital nas redes sem fio de 4a geração em especial WIMAX e femtocell tem sido um grande desafio para pesquisadores em todo o mundo, o teste destas tecnologias se mostra promissora para a melhor qualidade de serviço prestado pelas operadoras. Inicialmente, identificando o padrão de tráfego de rede através da aferição e caracterização de tráfego de uma aplicação interativa de TV Digital do Sistema Brasileiro de TV Digital (SBTVD). A partir de então, as simulações são feitas sobre uma rede sem fio. Para este estudo, a rede WiMAX foi escolhida como um de nossos estudo de caso. Um estudo dos impactos do uso desta aplicação em uma WMAN (Wireless Metropolitan Área Network) com WiMAX e também utilizando femtocells. Evidentemente, tecnologias sem fio apresentam uma grande variação da qualidade do sinal. Deste modo, é necessário utilizar uma solução para reduzir essa degradação no sinal. Dentre as possíveis soluções, o uso de femtocells surge como alternativa viável para estas melhorias, lembrando que uso de femtocell esta diretamente ligado para áreas onde o sinal é zero ou muito baixo. A utilização de simulações discretas através de ferramentas apropriadas como o OPNET, se mostram bastante úteis para viabilizar a utilização das tecnologias existentes, expondo-as a condições mais adversas de fluxo, carga , numero de usuários e distancias que certamente influenciam no desempenha de cada uma delas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In piattaforme di Stream Processing è spesso necessario eseguire elaborazioni differenziate degli stream di input. Questa tesi ha l'obiettivo di realizzare uno scheduler in grado di attribuire priorità di esecuzione differenti agli operatori deputati all'elaborazione degli stream.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cybernetics revolution of the last years improved a lot our lives, having an immediate access to services and a huge amount of information over the Internet. Nowadays the user is increasingly asked to insert his sensitive information on the Internet, leaving its traces everywhere. But there are some categories of people that cannot risk to reveal their identities on the Internet. Even if born to protect U.S. intelligence communications online, nowadays Tor is the most famous low-latency network, that guarantees both anonymity and privacy of its users. The aim of this thesis project is to well understand how the Tor protocol works, not only studying its theory, but also implementing those concepts in practice, having a particular attention for security topics. In order to run a Tor private network, that emulates the real one, a virtual testing environment has been configured. This behavior allows to conduct experiments without putting at risk anonymity and privacy of real users. We used a Tor patch, that stores TLS and circuit keys, to be given as inputs to a Tor dissector for Wireshark, in order to obtain decrypted and decoded traffic. Observing clear traffic allowed us to well check the protocol outline and to have a proof of the format of each cell. Besides, these tools allowed to identify a traffic pattern, used to conduct a traffic correlation attack to passively deanonymize hidden service clients. The attacker, controlling two nodes of the Tor network, is able to link a request for a given hidden server to the client who did it, deanonymizing him. The robustness of the traffic pattern and the statistics, such as the true positive rate, and the false positive rate, of the attack are object of a potential future work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improving the knowledge of demand evolution over time is a key aspect in the evaluation of transport policies and in forecasting future investment needs. It becomes even more critical for the case of toll roads, which in recent decades has become an increasingly common device to fund road projects. However, literature regarding demand elasticity estimates in toll roads is sparse and leaves some important aspects to be analyzed in greater detail. In particular, previous research on traffic analysis does not often disaggregate heavy vehicle demand from the total volume, so that the specific behavioral patternsof this traffic segment are not taken into account. Furthermore, GDP is the main socioeconomic variable most commonly chosen to explain road freight traffic growth over time. This paper seeks to determine the variables that better explain the evolution of heavy vehicle demand in toll roads over time. To that end, we present a dynamic panel data methodology aimed at identifying the key socioeconomic variables that explain the behavior of road freight traffic throughout the years. The results show that, despite the usual practice, GDP may not constitute a suitable explanatory variable for heavy vehicle demand. Rather, considering only the GDP of those sectors with a high impact on transport demand, such as construction or industry, leads to more consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period. This is an interesting case in the international context, as road freight demand has experienced an even greater reduction in Spain than elsewhere, since the beginning of the economic crisis in 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poder clasificar de manera precisa la aplicación o programa del que provienen los flujos que conforman el tráfico de uso de Internet dentro de una red permite tanto a empresas como a organismos una útil herramienta de gestión de los recursos de sus redes, así como la posibilidad de establecer políticas de prohibición o priorización de tráfico específico. La proliferación de nuevas aplicaciones y de nuevas técnicas han dificultado el uso de valores conocidos (well-known) en puertos de aplicaciones proporcionados por la IANA (Internet Assigned Numbers Authority) para la detección de dichas aplicaciones. Las redes P2P (Peer to Peer), el uso de puertos no conocidos o aleatorios, y el enmascaramiento de tráfico de muchas aplicaciones en tráfico HTTP y HTTPS con el fin de atravesar firewalls y NATs (Network Address Translation), entre otros, crea la necesidad de nuevos métodos de detección de tráfico. El objetivo de este estudio es desarrollar una serie de prácticas que permitan realizar dicha tarea a través de técnicas que están más allá de la observación de puertos y otros valores conocidos. Existen una serie de metodologías como Deep Packet Inspection (DPI) que se basa en la búsqueda de firmas, signatures, en base a patrones creados por el contenido de los paquetes, incluido el payload, que caracterizan cada aplicación. Otras basadas en el aprendizaje automático de parámetros de los flujos, Machine Learning, que permite determinar mediante análisis estadísticos a qué aplicación pueden pertenecer dichos flujos y, por último, técnicas de carácter más heurístico basadas en la intuición o el conocimiento propio sobre tráfico de red. En concreto, se propone el uso de alguna de las técnicas anteriormente comentadas en conjunto con técnicas de minería de datos como son el Análisis de Componentes Principales (PCA por sus siglas en inglés) y Clustering de estadísticos extraídos de los flujos procedentes de ficheros de tráfico de red. Esto implicará la configuración de diversos parámetros que precisarán de un proceso iterativo de prueba y error que permita dar con una clasificación del tráfico fiable. El resultado ideal sería aquel en el que se pudiera identificar cada aplicación presente en el tráfico en un clúster distinto, o en clusters que agrupen grupos de aplicaciones de similar naturaleza. Para ello, se crearán capturas de tráfico dentro de un entorno controlado e identificando cada tráfico con su aplicación correspondiente, a continuación se extraerán los flujos de dichas capturas. Tras esto, parámetros determinados de los paquetes pertenecientes a dichos flujos serán obtenidos, como por ejemplo la fecha y hora de llagada o la longitud en octetos del paquete IP. Estos parámetros serán cargados en una base de datos MySQL y serán usados para obtener estadísticos que ayuden, en un siguiente paso, a realizar una clasificación de los flujos mediante minería de datos. Concretamente, se usarán las técnicas de PCA y clustering haciendo uso del software RapidMiner. Por último, los resultados obtenidos serán plasmados en una matriz de confusión que nos permitirá que sean valorados correctamente. ABSTRACT. Being able to classify the applications that generate the traffic flows in an Internet network allows companies and organisms to implement efficient resource management policies such as prohibition of specific applications or prioritization of certain application traffic, looking for an optimization of the available bandwidth. The proliferation of new applications and new technics in the last years has made it more difficult to use well-known values assigned by the IANA (Internet Assigned Numbers Authority), like UDP and TCP ports, to identify the traffic. Also, P2P networks and data encapsulation over HTTP and HTTPS traffic has increased the necessity to improve these traffic analysis technics. The aim of this project is to develop a number of techniques that make us able to classify the traffic with more than the simple observation of the well-known ports. There are some proposals that have been created to cover this necessity; Deep Packet Inspection (DPI) tries to find signatures in the packets reading the information contained in them, the payload, looking for patterns that can be used to characterize the applications to which that traffic belongs; Machine Learning procedures work with statistical analysis of the flows, trying to generate an automatic process that learns from those statistical parameters and calculate the likelihood of a flow pertaining to a certain application; Heuristic Techniques, finally, are based in the intuition or the knowledge of the researcher himself about the traffic being analyzed that can help him to characterize the traffic. Specifically, the use of some of the techniques previously mentioned in combination with data mining technics such as Principal Component Analysis (PCA) and Clustering (grouping) of the flows extracted from network traffic captures are proposed. An iterative process based in success and failure will be needed to configure these data mining techniques looking for a reliable traffic classification. The perfect result would be the one in which the traffic flows of each application is grouped correctly in each cluster or in clusters that contain group of applications of similar nature. To do this, network traffic captures will be created in a controlled environment in which every capture is classified and known to pertain to a specific application. Then, for each capture, all the flows will be extracted. These flows will be used to extract from them information such as date and arrival time or the IP length of the packets inside them. This information will be then loaded to a MySQL database where all the packets defining a flow will be classified and also, each flow will be assigned to its specific application. All the information obtained from the packets will be used to generate statistical parameters in order to describe each flow in the best possible way. After that, data mining techniques previously mentioned (PCA and Clustering) will be used on these parameters making use of the software RapidMiner. Finally, the results obtained from the data mining will be compared with the real classification of the flows that can be obtained from the database. A Confusion Matrix will be used for the comparison, letting us measure the veracity of the developed classification process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Key words: Markov-modulated queues, waiting time, heavy traffic.