994 resultados para Traffic Models
Resumo:
Federal Highway Administration, Office of Traffic Management and IVHS, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.
Resumo:
During the last decade, the Internet usage has been growing at an enormous rate which has beenaccompanied by the developments of network applications (e.g., video conference, audio/videostreaming, E-learning, E-Commerce and real-time applications) and allows several types ofinformation including data, voice, picture and media streaming. While end-users are demandingvery high quality of service (QoS) from their service providers, network undergoes a complex trafficwhich leads the transmission bottlenecks. Considerable effort has been made to study thecharacteristics and the behavior of the Internet. Simulation modeling of computer networkcongestion is a profitable and effective technique which fulfills the requirements to evaluate theperformance and QoS of networks. To simulate a single congested link, simulation is run with asingle load generator while for a larger simulation with complex traffic, where the nodes are spreadacross different geographical locations generating distributed artificial loads is indispensable. Onesolution is to elaborate a load generation system based on master/slave architecture.
Resumo:
With the rapid development of telecommunication industry, the IP multimedia Subsystem (IMS) could very well be the panacea for most telecom operators. It is originally defined as the core network for 3G mobile systems by the 3rd Generation Partnership Project (3GPP), the more recent development is merging between fixed line network and wireless networkd This report researchs the characteristic of the IMS data and proposes an IMS characterization analysis. We captured the IMS traffic data with 10 tousands users for about 41 hours. By analyzing the characteristics of the IMS, we know that the most important application in the IMS is VoIP call. Then we use the tool designed by Tsinghua University & Ericsson Company to recognize the data, and the results we got can be used to build the traffic models. From the results of the traffic models, I will get some reasons and conclusion. The traffic model gives out the types of session and types of VoIP call. I bring into a concept—busy hour. This concept is very important because it can help us to know which period is the peak of the VoIP call. The busy hour is from 10:00 to 11:00 in the morning. I also bring into another concept—connection ratio. This concept is significant because it can evaluate whether the VoIP call is good when it use IMS network. By comparing the traffic model with other one’s models, we found the different results from them, both the accuracy and the busy hour. From the contract, we got the advantages of our traffic models.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
Transportation Department, Office of University Research, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Transportation Department, Office of University Research, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Indiana Department of Transportation, Indianapolis