990 resultados para Trabecular boné


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Excessive consumption of sugar-sweetened beverage is positively related to overweight. Despite the epidemic of childhood obesity, body mass can have a positive or negative effect on bone health. Material and methods: Wistar rats 8 weeks olds were randomly assigned to consume water (Control group, n = 10), sucrose 30% (HS group, n = 10) and water + sucrose 30% (WHS group, n = 14) for 8 weeks. All animals received standard laboratory chow ad libitum. Femur measurements included microhardness, bone mineral density (BMD) by DXA, mechanical compression test and microcomputed tomography (microCT) analysis. Results: We observed significant difference in final body weight in HS and WHS groups, significant increase in triacylglycerol/fructosamine in HS and WHS groups, significantly high BMD in WHS group, increased periosteal/endosteal cortical microhardness in WHS group. Compared with control, microCT parameters evidenced lower amount of connected trabecular bone, decreased bone volume, lower trabecular number with high trabecular separation in distal epiphysis in WHS animals. Conclusion: High-sucrose consumption causes obesity induced by a liquid diet with negative effects on cancellous bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate risk factors for low bone mineral density (BMD) and vertebral fractures, in juvenile systemic lupus (JSLE). Thirty-one consecutive patients with JSLE were compared with 31 gender- and age-matched healthy controls. BNID and body composition from all participants were measured using dual-energy X-ray absorptiometry. Vertebral fractures were defined as a reduction of >= 20% of the vertebral height for all patients. Lumbar spine and total femur BMD was significantly decreased in patients compared with controls (P = 0.021 and P = 0.023, respectively). A high frequency of vertebral fractures (22.58%) was found in patients with JSLE. Analysis of body composition revealed lower lean mass (P = 0.033) and higher fat mass percentage (P = 0.003) in patients than in controls. Interestingly, multiple linear regression using BMD as a dependent variable showed a significant association with lean mass in lumbar spine (R(2) = 0.262; P = 0.004) and total femur (R(2) = 0.419, P = 0.0001), whereas no association was observed with menarche age, SLE Disease Activity Index, Systemic Lupus International Collaborating Clinics/American College of Rheumatology, and glucocorticoid. This study indicates that low BMD and vertebral fractures are common in JSLE, and the former is associated with low lean mass, suggesting that muscle rehabilitation may be an additional target for bone therapeutic approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A role for the gastro-intestinal tract in controlling bone remodeling is suspected since serum levels of bone remodeling markers are affected rapidly after a meal. Glucose-dependent insulinotropic polypeptide (GIP) represents a suitable candidate in mediating this effect. The aim of the present study was to investigate the effect of total inhibition of GIP signaling on trabecular bone volume, microarchitecture and quality. We used GIP receptor (GIPR) knockout mice and investigated trabecular bone volume and microarchitecture by microCT and histomorphometry. GIPR-deficient animals at 16 weeks of age presented with a significant (20%) increase in trabecular bone mass accompanied by an increase (17%) in trabecular number. In addition, the number of osteoclasts and bone formation rate was significantly reduced and augmented, respectively in these animals when compared with wild-type littermates. These modifications of trabecular bone microarchitecture are linked to a remodeling in the expression pattern of adipokines in the GIPR-deficient mice. On the other hand, despite significant enhancement in bone volume, intrinsic mechanical properties of the bone matrix was reduced as well as the distribution of bone mineral density and the ratio of mature/immature collagen cross-links. Taken together, these results indicate an increase in trabecular bone volume in GIPR KO animals associated with a reduction in bone quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Purpose: The trabecular bone score (TBS), a novel graylevel texture index determined from lumbar spine DXA scans, correlates with 3D parameters of trabecular bone microarchitecture known to predict fracture. TBS may enhance the identification of patients at increased risk for vertebral fracture independently of bone mineral density (BMD) (Boutroy JBMR 2010; Hans JBMR 2011). Denosumab treatment for 36 months decreased bone turnover, increased BMD, and reduced new vertebral fractures in postmenopausal women with osteoporosis (Cummings NEJM 2009). We explored the effect of denosumab on TBS over 36 months and evaluated the association between TBS and lumbar spine BMD in women who had DXA scans obtained from eligible scanners for TBS evaluation in FREEDOM. Methods: FREEDOM was a 3-year, randomized, double-blind trial that enrolled postmenopausal women with a lumbar spine or total hip DXA T-score __2.5, but not __4.0 at both sites. Women received placebo or 60 mg denosumab every 6 months. A subset of women in FREEDOM participated in a DXA substudy where lumbar spine DXA scans were obtained at baseline and months 1, 6, 12, 24, and 36. We retrospectively applied, in a blinded-to-treatment manner, a novel software program (TBS iNsightR v1.9, Med-Imaps, Pessac, France) to the standard lumbar spine DXA scans obtained in these women to determine their TBS indices at baseline and months 12, 24, and 36. From previous studies, a TBS _1.35 is considered as normal microarchitecture, a TBS between 1.35 and _1.20 as partially deteriorated, and 1.20 reflects degraded microarchitecture. Results: There were 285 women (128 placebo, 157 denosumab) with a TBS value at baseline and _1 post-baseline visit. Their mean age was 73, their mean lumbar spine BMD T-score was _2.79, and their mean lumbar spine TBS was 1.20. In addition to the robust gains in DXA lumbar spine BMD observed with denosumab (9.8% at month 36), there were consistent, progressive, and significant increases in TBS compared with placebo and baseline (Table & Figure). BMD explained a very small fraction of the variance in TBS at baseline (r2_0.07). In addition, the variance in the TBS change was largely unrelated to BMD change, whether expressed in absolute or percentage changes, regardless of treatment, throughout the study (all r2_0.06); indicating that TBS provides distinct information, independently of BMD. Conclusion: In postmenopausal women with osteoporosis, denosumab significantly improved TBS, an index of lumbar spine trabecular microarchitecture, independently of BMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trabecular bone score (TBS, Med-Imaps, Pessac, France) is an index of bone microarchitecture texture extracted from anteroposterior dual-energy X-ray absorptiometry images of the spine. Previous studies have documented the ability of TBS of the spine to differentiate between women with and without fractures among age- and areal bone mineral density (aBMD)-matched controls, as well as to predict future fractures. In this cross-sectional analysis of data collected from 3 geographically dispersed facilities in the United States, we investigated age-related changes in the microarchitecture of lumbar vertebrae as assessed by TBS in a cohort of non-Hispanic US white American women. All subjects were 30 yr of age and older and had an L1-L4aBMDZ-score within ±2 SD of the population mean. Individuals were excluded if they had fractures, were on any osteoporosis treatment, or had any illness that would be expected to impact bone metabolism. All data were extracted from Prodigy dual-energy X-ray absorptiometry devices (GE-Lunar, Madison, WI). Cross-calibrations between the 3 participating centers were performed for TBS and aBMD. aBMD and TBS were evaluated for spine L1-L4 but also for all other possible vertebral combinations. To validate the cohort, a comparison between the aBMD normative data of our cohort and US non-Hispanic white Lunar data provided by the manufacturer was performed. A database of 619 non-Hispanic US white women, ages 30-90 yr, was created. aBMD normative data obtained from this cohort were not statistically different from the non-Hispanic US white Lunar normative data provided by the manufacturer (p = 0.30). This outcome thereby indirectly validates our cohort. TBS values at L1-L4 were weakly inversely correlated with body mass index (r = -0.17) and weight (r = -0.16) and not correlated with height. TBS values for all lumbar vertebral combinations decreased significantly with age. There was a linear decrease of 16.0% (-2.47 T-score) in TBS at L1-L4 between 45 and 90 yr of age (vs. -2.34 for aBMD). Microarchitectural loss rate increased after age 65 by 50% (-0.004 to -0.006). Similar results were obtained for other combinations of lumbar vertebra. TBS, an index of bone microarchitectural texture, decreases with advancing age in non-Hispanic US white women. Little change in TBS is observed between ages 30 and 45. Thereafter, a progressive decrease is observed with advancing age. The changes we observed in these American women are similar to that previously reported for a French population of white women (r(2) > 0.99). This reference database will facilitate the use of TBS to assess bone microarchitectural deterioration in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To have an added value over BMD, a CRF of osteoporotic fracture must be predictable of the fracture, independent of BMD, reversible and quantifiable. Many major recognized CRF exist. Out of these factors many of them are indirect factor of bone quality. TBS predicts fracture independently of BMD as demonstrated from previous studies. The aim of the study is to verify if TBS can be considered as a major CRF of osteoporotic fracture. Existing validated datasets of Caucasian women were analyzed. These datasets stem from different studies performed by the authors of this report or provided to our group. However, the level of evidence of these studies will vary. Thus, the different datasets were weighted differently according to their design. This meta-like analysis involves more than 32000 women (≥50years) with 2000 osteoporotic fractures from two prospective studies (OFELY&MANITOBA) and 7 cross-sectional studies. Weighted relative risk (RR) for TBS was expressed for each decrease of one standard deviation as well as per tertile difference (TBS=1.300 and 1.200) and compared with those obtained for the major CRF included in FRAX®. Overall TBS RR obtained (adjusted for age) was 1.79 [95%CI-1.37-2.37]. For all women combined, RR for fracture for the lowest compared with the middle TBS tertile was 1.55[1.46-1.68] and for the lowest compared with the highest TBS tertile was 2.8[2.70-3.00]. TBS is comparable to most of the major CRF and thus could be used as one of them. Further studies have to be conducted to confirm these first findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Trabecular Bone Score (TBS, Med-Imaps, France) is an index of bone microarchitecture calculated from antero-posterior spine DXA scan and reported to be associated with fracture in prior case-control studies and in a large prospective study with the Prodigy DXA device. Our aim was to assess the ability of TBS to predict incident fracture and improve the classification of fracture prospectively in the OFELY study.Materials/Methods: TBS was assessed in 564 postmenopausal women (66±8 years old) from the OFELY cohort, who had a spine DXA scan (QDR 4500A, Hologic, USA) between year 2000 and 2001. During a mean follow up of 7.8±1.3 years, 94 women sustained a fragility fracture.Results: At the time of baseline DXA scan, women with incident fracture were significantly older (70±9 vs. 65± 8 years), had a lower spine BMD (T-score: −1.9±1.2 vs. −1.3±1.3, p<0.001) and spine TBS (−3.1%, p<0.001) than women without incident fracture. After adjustment for age, BMI and the presence of prevalent fracture, the magnitude of fracture prediction was similar for spine BMD (OR=1.42 [1.11;1.82] per SD decrease [95% CI]) and TBS (OR=1.34 [1.04;1.74]) but the combination of TBS and spine BMD did not improve fracture prediction. Spine BMD and TBS were both correlated with age (respectively r=−0.17 and −0.49, p<0.001) and correlated together with 39% of TBS explained by spine BMD (r=0.63, p<0.001). When using the WHO classification, 38% of the fractures occurred in osteoporotic (fracture rate=29%), 47% in osteopenic (fracture rate=16%) and 15% in women with T-score >−1 (fracture rate=9%). By classifying our population in tertiles of TBS, we found that 47% of the fractures occurred in the lowest tertile of TBS (fracture rate=23%) and 39% of the fracture that occurred in osteopenic women were in the lowest tertile of TBS.Conclusions: Spine BMD and TBS predicted fractures equally well. The addition of TBS to spine BMD added only limited information on fracture risk prediction in our cohort when considering the all range of BMD. Nevertheless combining the osteopenic T-score and the lowest TBS helped defining a subset of osteopenic women at higher risk of fracture.Disclosure of Interest: None declared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment. © 2014 American Society for Bone and Mineral Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many negative impacts of obesity on fertility. Obese couples present decreased sperm count, decreased ovulation and conception rates, increased erectile dysfunction and spontaneous abortion rate as well as increased maternal and foetal complications of pregnancy. Moreover, obesity tends to decrease response to fertility treatments. Fortunately, intensive lifestyle modifications can restore fertility while decreasing pregnancy complications risk. With the increasing trend of obesity to affect young populations, taking care of these infertile couples rapidly is capital to restore fertility and decrease its related pregnancy complications.