917 resultados para Toxic metals
Resumo:
This work presents for the first time a systematic study on the optimization of the electrochemical cleaning time of a mercury film when it is used as a working electrode material in the analysis of toxic metals, such as Pb2+, used as model metal, in real samples by SWASV. The optimization study for the film’s cleaning time aimed at attaining a Pb2+ minimum value in the film after the re-oxidation step of the pre-concentrated metal, given the impossibility of complete removal of traces of the electroactive species from the film. This value was kept constant in each concentration range studied ensuring thus that all assays were performed in initial identical conditions. An assay performed on a synthetic sample was taken as reference. In it, given the absence of matrix effects, and after the electrochemical cleaning step, a direct proportionality was observed between the residual amounts of Pb2+ in the film (which for the cleaning time used was never completely removed) and Pb2+ concentration in the solution. This fact determined a high correlation between Pb2+ peak current and Pb2+ concentration which was not observed when real samples (tree leaves) were analyzed. This behavior may result from the presence of the interfering surfactants always present in real samples of complex matrix. Cleaning time optimization was performed for the following Pb2+ concentration ranges in the real samples of complex matrix: 0.006-0.020, 0.020-0.080, 0.060-0.200 and 0.100-0.600 ppb. As expected, in order to obtain identical levels of film’s cleaning efficiency, the need for longer cleaning times has been observed for higher concentrations. The optimized cleaning times for the concentration ranges under study were 120, 150, 180 e 300 s, respectively.
Resumo:
The extraction and use of metals has been the mainstay for the sustained development and progress of a nation. Metals, though fairly stable in the natural environment are found in trace quantities in water bodies. Attention has therefore been focused to identify the metals that impair the water quality. In the last few decades the concern about the fate of these metals in the aquatic system has been gaining momentum, particularly in the industrial belts. The disasters caused by metal poisoning in recent times have prompted an indepth study of the interaction of metals with aquatic biota. Kerala, basically an agriculture oriented state has witnessed the upsurgence of various industries as a part of the nationwide economic development programme. Cochin has been identified as the industrial capital of the state.The present study is an attempt towards a better understanding of the metal-phytoplankton interactions with special reference to the physiological changes in the species. various parameters such as temperature, salinity, pH, nutrients, number of cells, photosynthetic pigments, carbohydrates, protein and lipid are studied to highlight the complexity of metal..phytoplankton interaction
Resumo:
Alginate is one the materials most employed in practice to make dental impressions. Substances like zinc, cadmium and lead silicate, which are included in several alginate brands with the aim of improving their physical, chemical and mechanical properties, are a source of serious concern as regards their toxicity. The most serious chronic effect of oral exposure to cadmium is renal toxicity. Assimilation of lead has deleterious effects on the gastrointestinal tract, hematopoietic system, cardiovascular system, central and peripheral nervous systems, kidneys, immune system, and reproductive system. Chronic oral exposures to zinc have resulted in hypochromic and microcyte anemia in some individuals. The aim of the present study was to measure the cadmium, lead and zinc contents of seven brands of alginate for dental use on sale in Brazil. The samples were weighed and placed in the Teflon cups of a closed-system microwave oven. Aqua regia (4mL concentrated HCI:HNO3, 3:1 v/v) and hydrofluoric acid (2mL concentrated HF) were added to the samples, which were then subjected to heating. The samples were then cooled to room temperature and diluted to 25 mL in deionized water in a volumetric glass flask. The samples were diluted in duplicate and analyzed against a reagent blank. The analyses were performed in an atomic absorption flame spectrophotometer. Neither lead nor cadmium was detected. Zinc contents ranged from 0.001% to 1.36% by weight. The alginates exhibited low contents of the metals under study and gave no cause for concern regarding toxicity; even so, it is advisable to monitor potentially toxic materials continually and to analyze their plasmatic levels in the professionals working with them.
Resumo:
Toxic metals are part of the most important groups of environmental pollutants that can bind to vital cellular components and interfere with their functions via inhalation, foods, water etc. The serum levels of toxic metals (lead, mercury, cadmium and arsenic) in pregnant women with history of pregnancy complications, pregnant women without history of pregnancy complication and non-pregnant women in Benin City, South – South Nigeria was investigated in this paper, with total of 135 healthy women comprising of 45 pregnant women with history of previous pregnancy complications, 45 pregnant women without history of pregnancy complications and 45 non-pregnant women without history of pregnancy complications (controls). Some demographic characteristics and 4ml of blood samples were obtained from each subject for the analysis of lead, mercury, cadmium and arsenic by standard methods. Pregnant women with history of pregnancy complications recorded a highly significant increase in the toxic metal (lead) mean value of 25.81μg/dl as against 23.70μg/dl for pregnant women without history of pregnancy complications and 11.23μg/dl for non-pregnant (control) women without history of pregnancy complications as well as significant increases in the mean values of other toxic metals (mercury, cadmium and arsenic) compared with controls (p<0.001). The selected toxic metals (Pb, Hg, Cd and As) may be involved in the development of pregnancy complications among pregnant women in Benin City, South– South Nigeria. Lead in particular may pose threat to mothers and fetuses as its mean values in the two groups of pregnant women were well above normal.
Resumo:
This pilot study uses concentrations of metals in maternal and cord blood at delivery, in seven selected geographical areas of South Africa, to determine prenatal environmental exposure to toxic metals. Samples of maternal and cord whole blood were analysed for levels of cadmium, mercury, lead, manganese, cobalt, copper, zinc, arsenic and selenium. Levels of some measured metals differed by site, indicating different environmental pollution levels in the regions selected for the study. Mercury levels were elevated in two coastal populations studied (Atlantic and Indian Ocean sites) with mothers from the Atlantic site having the highest median concentration of 1.78 mu g/L ranging from 0.44 to 8.82 mu g/L, which was found to be highly significant (p < 0.001) when compared to other sites, except the Indian Ocean site. The highest concentration of cadmium was measured in maternal blood from the Atlantic site with a median value of 0.25 mu g/L (range 0.05-0.89 mu g/L), and statistical significance of p < 0.032, when compared to all other sites studied, and p < 0.001 and p < 0.004 when compared to rural and industrial sites respectively, confounding factor for elevated cadmium levels was found to be cigarette smoking. Levels of lead were highest in the urban site, with a median value of 32.9 mu g/L (range 16-81.5 mu g/L), and statistically significant when compared with other sites (p < 0.003). Levels of selenium were highest in the Atlantic site reaching statistical significance (p < 0.001). All analysed metals were detected in umbilical cord blood samples and differed between sites, with mercury being highest in the Atlantic site (p < 0.001), lead being highest in the urban site (p < 0.004) and selenium in the Atlantic site (p < 0.001). To the best of our knowledge this pilot investigation is the first study performed in South Africa that measured multiple metals in delivering mothers and umbilical cord blood samples. These results will inform the selection of the geographical sites requiring further investigation in the main study.
Resumo:
Throughout the year of 2004, 54 samples (I L each) were collected from commercial sources in the Vale do Paraiba region (eastern portion of Sao Paulo State, Brazil). The concentrations of (Ca, Cr, Cu, Fe, Mg, Mn, Ni, Se, Zn, Cd and Pb) in these samples were analyzed by two atomic-absorption spectroscopy (AAS) methods. Ca, Cu, Fe, Mg and Zn were determined by flame atomic-absorption spectroscopy (FAAS) and (Cd, Cr, Mn, Ni, Pb and Se) were determined by electrothermal atomic-absorption spectroscopy (ETAAS). Tests to determine and quantify essential, nonessential and toxic elements present in bovine milk are rare in Brazil, especially so for Vale do Paraiba region. Tests were performed on standard NIST-certified milk-powder to validate the reliability of subsequently collected analytical data. Ca presented a lower recovery value (85.3%). The finding for Ca macro-nutrient was found to be below recommended international standards (1300 mg/L) for all samples possibly due to milk heterogeneity and losses in the pasteurization process. Significant results for Pb were found in all milk samples with average values at 0.230 mg/L from a minimum of 0.062 mg/L and maximum of 0.476 mg/L (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hospitals are considered as a special and important type of indoor public place where air quality has significant impacts on potential health outcomes. Information on indoor air quality of these environments, concerning exposures to particulate matter (PM) and related toxicity, is limited though. This work aims to evaluate risks associated with inhalation exposure to ten toxic metals and chlorine (As, Ni, Cr, Cd, Pb, Mn, Se, Ba, Al, Si, and Cl) in coarse (PM2.5–10) and fine (PM2.5) particles in a Portuguese hospital in comparison with studies representative of other countries. Samples were collected during 1 month in one urban hospital; elemental PM characterization was determined by proton-induced X-ray emission. Noncarcinogenic and carcinogenic risks were assessed according to the methodology provided by the United States Environmental Protection Agency (USEPA; Region III Risk-Based Concentration Table) for three different age categories of hospital personnel (adults, >20, and <65 years) and patients (considering nine different age groups, i.e., children of 1–3 years to seniors of >65 years). The estimated noncarcinogenic risks due to occupational inhalation exposure to PM2.5-bound metals ranged from 5.88×10−6 for Se (adults, 55–64 years) to 9.35×10−1 for As (adults, 20–24 years) with total noncarcinogenic risks (sum of all metals) above the safe level for all three age categories. As and Cl (the latter due to its high abundances) were the most important contributors (approximately 90 %) to noncarcinogenic risks. For PM2.5–10, noncarcinogenic risks of all metals were acceptable to all age groups. Concerning carcinogenic risks, for Ni and Pb, they were negligible (<1×10−6) in both PM fractions for all age groups of hospital personnel; potential risks were observed for As and Cr with values in PM2.5 exceeding (up to 62 and 5 times, respectively) USEPA guideline across all age groups; for PM2.5–10, increased excess risks of As and Cr were observed particularly for long-term exposures (adults, 55–64 years). Total carcinogenic risks highly (up to 67 times) exceeded the recommended level for all age groups, thus clearly showing that occupational exposure to metals in fine particles pose significant risks. If the extensive working hours of hospital medical staff were considered, the respective noncarcinogenic and carcinogenic risks were increased, the latter for PM2.5 exceeding the USEPA cumulative guideline of 10−4. For adult patients, the estimated noncarcinogenic and carcinogenic risks were approximately three times higher than for personnel, with particular concerns observed for children and adolescents.
Resumo:
This article present the result from a study of two sediment cores collected from the environmentally distinct zones of CES. Accumulation status of five toxic metals: Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu) and Lead (Pb) were analyzed. Besides texture and CHNS were determined to understand the composition of the sediment. Enrichment Factor (EF) and Anthropogenic Factor (AF) were used to differentiate the typical metal sources. Metal enrichment in the cores revealed heavy load at the northern (NS1 ) region compared with the southern zone (SS1). Elevation of metal content in core NS1 showed the industrial input. Statistical analyses were employed to understand the origin of metals in the sediment samples. Principal Component Analysis (PCA) distinguishes the two zones with different metal accumulation capacity: highest at NS1 and lowest at SS1. Correlation analysis revealed positive significant relation only in core NS1, adhering to the exposition of the intensified industrial pollution
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)