990 resultados para Toxic Equivalency Factors
Resumo:
Some polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in air and have been implicated as carcinogenic materials. Therefore, literature is replete with studies that are focused on their occurrence and profiles in indoor and outdoor air samples. However, because the relative potency of individual PAHs vary widely, health risks associated with the presence of PAHs in a particular environment cannot be extrapolated directly from the concentrations of individual PAHs in that environment. In addition, database on the potency of PAH mixtures is currently limited. In this paper, we have utilized multi-criteria decision making methods (MCDMs) to simultaneously correlate PAH-related health risk in some microenvironments to the concentration levels, ethoxyresorufin-O-deethylase (EROD) activity induction equivalency factors and toxic equivalency factors (TEFs) of PAHs found in those microenvironments. The results showed that the relative risk associated with PAHs in different air samples depends on the index used. Nevertheless, this approach offers a promising tool that could help identify microenvironments of concern and assist the prioritisation of control strategies.
Resumo:
Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).
Resumo:
The purpose of this study was to investigate polychlorinated biphenyls (PCBs) contamination in tilapia (Oreochromis mossambicus) collected from the Manna stream and Ala Wai Canal of O'ahu, an island of the geographically isolated Hawaiian archipelago. Our results show that the average concentrations of PCBs varied from 51.90 to 89.42 ng g(-1) lipid weight for the sampling sites. Relative toxic potencies (RTPs) and toxic equivalencies (TEQs) were determined to be 20.38-40.60 ng TCDD g(-1) lipid weight and 2.89-4.17 ng TEQ g(-1) lipid weight by 7-ethoxy-resorufin-O-deethylase (EROD) activity analysis and calculation of PCB concentrations based on toxic equivalency factors (TEFs), respectively. Penta-chlorinated congeners were found to be predominant, which revealed that Aroclor 1254 was a possible major source of PCBs in our fish samples. PCB 118, an indicator PCBs, constituted more than 55% and 30% of the total PCBs and TEQs, respectively. In addition, PCB 118 was found to have a linear correlation to the total PCBs (R = 0.975) and TEQs (R = 0.782). Detection of concentrated PCBs in Hawaiian waters suggests a potentially adverse impact of this pollutant on human health, as well as ecological systems, and suggests the necessity of environmental monitoring and hazard assessment of PCBs within the Hawaiian Islands. (c) 2008 Published by Elsevier Ltd.
Resumo:
Polycyclic aromatic hydrocarbons (PAH) were measured in smoke samples from wood carbonization during charcoal production, in both particulate matter (PM) and gaseous phases. Samples were acquired using a medium-volume air sampler at 1.5 m distance from the furnace. Particle-bound PAH were collected on Fluoropore polytetrafluoroethylene filters and gas-phase PAH were collected into sorbent tubes with XAD-2 resin. PAH were extracted with dichloromethane-methanol and analyzed using gas chromatography-mass spectrometry. The results showed total emission from the furnace of 26 mu g/m(3) for the 16 PAH and 2.8 mu g/m(3) for the 10 genotoxic PAH (from fluoranthene to benzo[g,h,i]perylene). High emission of 16 PAH in the first 8 h of wood carbonization was detected (64 mu g/m(3); 56% of the total emission). Associated with PM, 11% of the total emission of 16 PAH (in both phases) and 60% of 10 genotoxic PAH were found. Relative ratios (for example, [Phe]/[Phe] + [Ant]) for the PAH of the same molecular weight were obtained and compared with the published data. The concentrations of benzo[a]pyrene equivalent (BaPeq) were estimated using the list of toxic equivalent factors suggested by Nisbet and LaGoy, 1992. The values of 0.30 and 0.06 mg/m3 were obtained for the total concentrations of BaPeq in PM and gaseous phase, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Thames Estuary, UK, and the Brisbane River, Australia, are comparable in size and catchment area. Both are representative of the large and growing number of the world's estuaries associated with major cities. Principle differences between the two systems relate to climate and human population pressures. In order to assess the potential phytotoxic impact of herbicide residues in the estuaries, surface waters were analysed with a PAM fluorometry-based bioassay that employs the photosynthetic efficiency (photosystem II quantum yield) of laboratory cultured microalgae, as an endpoint measure of phytotoxicity. In addition, surface waters were chemically analysed for a limited number of herbicides. Diuron atrazine and simazine were detected in both systems at comparable concentrations. In contrast, bioassay results revealed that whilst detected herbicides accounted for the observed phytotoxicity of Brisbane River extracts with great accuracy, they consistently explained only around 50% of the phytotoxicity induced by Thames Estuary extracts. Unaccounted for phytotoxicity in Thames surface waters is indicative of unidentified phytotoxins. The greatest phytotoxic response was measured at Charing Cross, Thames Estuary, and corresponded to a diuron equivalent concentration of 180 ng L-1. The study employs relative potencies (REP) of PSII impacting herbicides and demonstrates that chemical analysis alone is prone to omission of valuable information. Results of the study provide support for the incorporation of bioassays into routine monitoring programs where bioassay data may be used to predict and verify chemical contamination data, alert to unidentified compounds and provide the user with information regarding cumulative toxicity of complex mixtures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), a protected endangered species, is the sole freshwater subspecies of finless porpoise, living only in the middle and lower reaches of the Yangtze River, China, and its appended lakes. Its population has decreased sharply to 1,400 because of human activities, including environmental contamination. In the present study, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in the blubber, liver, kidney, stomach, small intestine, and brains of five individual Yangtze finless porpoises collected from 1998 to 2004. The results showed PCB concentrations ranged from 0.06 to 1.89 mu g/g lipid weight in the organs and consisted mainly of penta-, hexa-. and decachlorinated biphenyls. The PBDE concentrations were between 5.32 and 72.76 ng/g lipid weight. Tetra-, penta-, and hexabrominated diphenyl ethers were the major homologues. The PCDD/F concentrations ranged from 65 to 1,563 pg/g lipid weight, and their predominant homologues were penta- and hexachlorinated dibenzofurans and hepta- and octachlorinated dibenzo-p-dioxins. The hazard quotients (HQs) based on toxic equivalency were determined to be greater than one in all individuals for PCBs, for PCDD/Fs, and for PCBs and PCDD/Fs In addition, HQs would be higher if PBDEs were included. The results suggest that reduction of environmental contamination may contribute greatly to protecting this highly endangered species.
Resumo:
This study is one of the very few investigating the dioxin body burden of a group of child-bearing-aged women at an electronic waste (e-waste) recycling site (Taizhou, Zhejiang Province) (24 +/- 2.83 years of age, 40% were primiparae) and a reference site (Lin'an city, Zhejiang Province, about 245 km away from Taizhou) (24 +/- 2.35 years of age, 100% were primiparae) in China. Five sets of samples (each set consisted of human milk, placenta, and hair) were collected from each site. Body burdens of people from the e-waste processing site (human milk, 21.02 +/- 13.81 pg WHO-TEQ(1998/g) fat (World Health Organization toxic equivalency 1998); placenta, 31.15 +/- 15.67 pg WHO-TEQ(1998/g) fat; hair, 33.82 +/- 17.74 pg WHO-TEQ(1998/g) dry wt) showed significantly higher levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurnas (PCDD/Fs) than those from the reference site (human milk, 9.35 +/- 7.39 pg WHO-TEQ(1998/g) fat, placenta, 11.91 +/- 7.05 pg WHO-TEQ(1998/g) fat; hair, 5.59 +/- 4.36 pg WHO-TEQ(1998/g) dry wt) and were comparatively higher than other studies. The difference between the two sites was due to e-waste recycling operations, for example, open burning, which led to high background levels. Moreover, mothers from the e-waste recycling site consumed more foods of animal origin. The estimated daily intake of PCDD/Fs within 6 months by breast-fed infants from the e-waste processing site was 2 times higher than that from the reference site. Both values exceeded the WHO tolerable daily intake for adults by at least 25 and 11 times, respectively. Our results implicated that e-waste recycling operations cause prominent PCDD/F levels in the environment and in humans. The elevated body burden may have health implications for the next generation.
Resumo:
The present study monitored 10-year-old fish and piscivorous birds from sites contaminated for many Stars. The data reflected the results of actual, long-term environmental exposures, The results demonstrate that different tissues of fish have quite different concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), The concentration order of PCDD/F within fish is liver congruent to egg congruent to intestines kidney congruent to hearts gill congruent to bladders > muscle > brain. The concentration order of PCDD/F within piscivorous birds was livers egg congruent to hearts muscle congruent to stomachs brain, The results obtained also demonstrate that the accumulation patterns of piscivorous birds and fish are quite different. The tissues of fish and piscivorous birds have different capacities for bioaccumulation and biotransformation of PCDD/F; variable proportions of TEQs were also found throughout their bodies. In fish, toxic equivalency quotient (TEQ): PCDD/F ratios in various tissues ranged from 0.01 to 0.07, whereas in birds the ratios ranged from 0.07 to 0.43. If the concentrations are normalized with lipid content, the results vary less. The effect of different lipid properties is obvious in the case of brain tissue, which is richer in phospholipids. (C) 2000 Academic Press.
Resumo:
Considering tobacco smoke as one of the most health-relevant indoor sources, the aim of this work was to further understand its negative impacts on human health. The specific objectives of this work were to evaluate the levels of particulate-bound PAHs in smoking and non-smoking homes and to assess the risks associated with inhalation exposure to these compounds. The developed work concerned the application of the toxicity equivalency factors approach (including the estimation of the lifetime lung cancer risks, WHO) and the methodology established by USEPA (considering three different age categories) to 18 PAHs detected in inhalable (PM10) and fine (PM2.5) particles at two homes. The total concentrations of 18 PAHs (ΣPAHs) was 17.1 and 16.6 ng m−3 in PM10 and PM2.5 at smoking home and 7.60 and 7.16 ng m−3 in PM10 and PM2.5 at non-smoking one. Compounds with five and six rings composed the majority of the particulate PAHs content (i.e., 73 and 78 % of ΣPAHs at the smoking and non-smoking home, respectively). Target carcinogenic risks exceeded USEPA health-based guideline at smoking home for 2 different age categories. Estimated values of lifetime lung cancer risks largely exceeded (68–200 times) the health-based guideline levels at both homes thus demonstrating that long-term exposure to PAHs at the respective levels would eventually cause risk of developing cancer. The high determined values of cancer risks in the absence of smoking were probably caused by contribution of PAHs from outdoor sources.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that frequently accumulate in soils. There is therefore a requirement to determine their levels in contaminated environments for the purposes of determining impacts on human health. PAHs are a suite of individual chemicals, and there is an ongoing debate as to the most appropriate method for assessing the risk to humans from them. Two methods predominate: the surrogate marker approach and the toxic equivalency factor. The former assumes that all chemicals in a mixture have an equivalent toxicity. The toxic equivalency approach estimates the potency of individual chemicals relative to the usually most toxic Benzo(a)pyrene. The surrogate marker approach is believed to overestimate risk and the toxic equivalency factor to underestimate risk. When analysing the risks from soils, the surrogate marker approach is preferred due to its simplicity, but there are concerns because of the potential diversity of the PAH profile across the range of impacted soils. Using two independent data sets containing soils from 274 sites across a diverse range of locations, statistical analysis was undertaken to determine the differences in the composition of carcinogenic PAH between site locations, for example, rural versus industrial. Following principal components analysis, distinct population differences were not seen between site locations in spite of large differences in the total PAH burden between individual sites. Using all data, highly significant correlations were seen between BaP and other carcinogenic PAH with the majority of r2 values > 0.8. Correlations with the European Food Standards Agency (EFSA) summed groups, that is, EFSA2, EFSA4 and EFSA8 had even higher correlations (r2 > 0.95). We therefore conclude that BaP is a suitable surrogate marker to represent mixtures of PAH in soil during risk assessments.
Resumo:
A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, polychlorinated dibenzo-p-dioxins/dibenzofurans and polychlorinated biphenyls in biosolids and compost-like-outputs (CLOs) were, in most cases, between 5-50 times lower than proposed and implemented European limit values for biosolids or composts applied to agricultural land. However, the technical basis for these limits may need to be re-evaluated. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected in the biosolids and compost-like-outputs and their potential contribution to the overall toxic equivalency will be assessed. Other, ‘emerging’ contaminants such as perfluoralkyl compounds (PFCs) and organophosphate flame retardants were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence to improve confidence in the use of waste-derived materials in agriculture and establish guidelines to protect the food chain where necessary.
Resumo:
Seventeen polycyclic aromatic hydrocarbons (PAHs) were studied in surface waters (including particulate phase) from the Chenab River, Pakistan and ranged from 289-994 and 437-1290 ng l-1 in summer and winter (2007-09), respectively. Concentrations for different ring-number PAHs followed the trend: 3-rings > 2-rings > 4-rings > 5-rings > 6-rings. The possible sources of PAHs are identified by calculating the indicative ratios; appropriating petrogenic sources of PAHs in urban and sub-urban regions with pyrogenic sources in agricultural region. Factor analysis based on principal component analysis identified the origins of PAHs from industrial activities, coal and trash burning in agricultural areas and municipal waste disposal from surrounding urban and sub-urban areas via open drains into the riverine ecosystem. Water quality guidelines and toxic equivalent factors highlighted the potential risk of low molecular weight PAHs to the aquatic life of the Chenab River. The flux estimated for PAHs contaminants from the Chenab River to the Indus River was >50 tons/year.
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.