1000 resultados para Toughening Mechanisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toughness is the ability of a material to deform plastically and to absorb energy before fracture. The first of its kind, this book covers the most recent developments in the toughening of hard coatings and the methodologies for measuring the toughness of thin films and coatings. The book looks at the present status of toughness for coatings and discusses high-temperature nanocomposite coatings, porous thin films, laser treated surface layers, cracking resistance, indentation techniques, sliding contact fracture, IPN hybrid composites for protection, and adhesion strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative potency of common toughening mechanisms is explored for layered solids and particulate solids, with an emphasis on crack multiplication and plasticity. First, the enhancement in toughness due to a parallel array of cracks in an elastic solid is explored, and the stability of co-operative cracking is quantified. Second, the degree of synergistic toughening is determined for combined crack penetration and crack kinking at the tip of a macroscopic, mode I crack; specifically, the asymptotic problem of self-similar crack advance (penetration mode) versus 90 ° symmetric kinking is considered for an isotropic, homogeneous solid with weak interfaces. Each interface is treated as a cohesive zone of finite strength and toughness. Third, the degree of toughening associated with crack multiplication is assessed for a particulate solid comprising isotropic elastic grains of hexagonal shape, bonded by cohesive zones of finite strength and toughness. The study concludes with the prediction of R-curves for a mode I crack in a multi-layer stack of elastic and elastic-plastic solids. A detailed comparison of the potency of the above mechanisms and their practical application are given. In broad terms, crack tip kinking can be highly potent, whereas multiple cracking is difficult to activate under quasi-static conditions. Plastic dissipation can give a significant toughening in multi-layers especially at the nanoscale. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the transmission electron micrographs of nacre, the existence of mineral bridges in the organic matrix interface is confirmed. It is proposed that the microarchitecture of nacre should be considered as a "brick-bridge-mortar" (BBM) arrangement rather than traditional "brick and mortar" (BM) one. Experiments and analyses indicate that the mineral bridges effectively affect the strength and toughness of the interfaces in nacre. Comparison with a laminated composite with BM structure, SiC/BN, shows that the pattern of the crack extension and the toughening mechanism of the two materials are different. This reveals that the mineral bridges play a key role in the toughening mechanisms of nacre, which gives a conceptual guidance in material synthesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphene–polymer nanocomposites have promising properties as new structural and functional materials. The remarkable mechanical property enhancement in these nanocomposites is generally attributed to exceptional mechanical property of graphene and possible load transfer between graphene and polymer matrix. However, the underlying strengthening and toughening mechanisms have not been well understood. In this work, the interfacial behavior of graphene-polyethylene (PE) was investigated using molecular dynamics (MD) method. The interfacial shear force (ISF) and interfacial shear stress (ISS) between graphene and PE matrix were evaluated, taking into account graphene size, the number of graphene layers and the structural defects in graphene. MD results show that the ISS at graphene-PE interface mainly distributes at each end of the graphene nanofiller within the range of 1 nm, and much larger than that at carbon nanotube (CNT)-PE interface. Moreover, it was found that the ISS at graphene-PE interface is sensitive to the layer number.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydroxyapatite(OHAp)-based ceramic composites with added ZrO2 have been prepared both by sintering at 1400 °C and by hot isostatic pressing (HIP) at 1450 °C and 140 MPa pressure (argon atmosphere). The development of the crystalline phases and the microstructure of the composites have been examined using X-ray diffraction, electron microscopy, infrared and magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopic techniques. The fracture toughness and biocompatibility of the composites have also been studied. The effect of the addition of CeO2- and Y2O3-stabilized ZrO2 and of simple monoclinic ZrO2 to the initial physical mixture, on the structure and properties of the resulting composites has been investigated. In most of the sintered or HIP samples, the OHAp decomposes into tricalcium phosphate (β-TCP). CaO, which forms as a product of decomposition, dissolves completely in ZrO2 and stabilizes the latter in its cubic/tetragonal phase. Presence of the β-TCP phase in the product seems to be the result of a structural synergistic effect of hexagonal OHAp. Two structurally distinct orthophosphate groups have been identified in the composites by MASNMR of 31P and attributed to decomposition products of OHAp at higher temperatures. The composites possess high KIC values (2–3 times higher than that of pure OHAp). Decomposition of hydroxyapatite gives rise to differences in microstructure between HIP and simply sintered composites although fracture toughness values are similar in magnitude indicating the presence of several toughening mechanisms. The in vitro SP2-O cell test suggests that these composites possess good biocompatibility. The combination of good biocompatibility, desirable microstructure and easy availability of initial reactants indicates that the simply sintered composite of OHAp and monoclinic ZrO2(ZAP-30) appears to be the most suitable for prosthetic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. (C) 2014 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flexible organic elastomeric nanoparticles (ENP) and two kinds of rigid inorganic silica nanoparticles were dispersed respectively into a bisphenol-A epoxy resin in order to tailor and compare the performance of mechanical properties. It was found that the well-dispersed flexible ENP greatly enhanced the toughness of the epoxy with the cost of modulus and strength. Comparatively, the rigid silica nanoparticles improved Young's modulus, tensile strength and fracture toughness simultaneously. Both fumed and sol-gel-formed nanosilica particles conducted similar results in reinforcing the epoxy resin, although the latter exhibited almost perfect nanoparticle dispersion in matrix. The toughening mechanisms of nanocomposites were further discussed based on fractographic analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively. © 2014 Springer Science+Business Media New York.