4 resultados para Torrefied


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The char oxidation of a torrefied biomass and its parent material was carried out in an isothermal plug flow reactor (IPFR), which is able to rapidly heat the biomass particles to a maximum temperature of 1400 °C at a heating rate of 104 °C/s, similar to the real conditions found in power plant furnaces. During each char oxidation test, the residues of biomass particles were collected and analyzed to determine the weight loss based on the ash tracer method. According to the experimental results, it can be concluded that chars produced from a torrefied biomass are less reactive than the ones produced, under the same conditions, from its raw material. The apparent kinetics of the torrefied biomass and its parent material are determined by minimizing the difference between the modeled and the experimental results. The predicted weight loss during char oxidation, using the determined kinetics, agrees well with experimental results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2016-06-17 02:15:25.215

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently developed novel biomass fuel pellet, the Q’ Pellet, offers significant improvements over conventional white pellets, with characteristics comparable to those of coal. The Q’ Pellet was initially created at bench scale using a proprietary die and punch design, in which the biomass was torrefied in-situ¬ and then compressed. To bring the benefits of the Q’ Pellet to a commercial level, it must be capable of being produced in a continuous process at a competitive cost. A prototype machine was previously constructed in a first effort to assess continuous processing of the Q’ Pellet. The prototype torrefied biomass in a separate, ex-situ reactor and transported it into a rotary compression stage. Upon evaluation, parts of the prototype were found to be unsuccessful and required a redesign of the material transport method as well as the compression mechanism. A process was developed in which material was torrefied ex-situ and extruded in a pre-compression stage. The extruded biomass overcame multiple handling issues that had been experienced with un-densified biomass, facilitating efficient material transport. Biomass was extruded directly into a novel re-designed pelletizing die, which incorporated a removable cap, ejection pin and a die spring to accommodate a repeatable continuous process. Although after several uses the die required manual intervention due to minor design and manufacturing quality limitations, the system clearly demonstrated the capability of producing the Q’ Pellet in a continuous process. Q’ Pellets produced by the pre-compression method and pelletized in the re-designed die had an average dry basis gross calorific value of 22.04 MJ/kg, pellet durability index of 99.86% and dried to 6.2% of its initial mass following 24 hours submerged in water. This compares well with literature results of 21.29 MJ/kg, 100% pellet durability index and <5% mass increase in a water submersion test. These results indicate that the methods developed herein are capable of producing Q’ Pellets in a continuous process with fuel properties competitive with coal.