950 resultados para Topographic map
Resumo:
Each primary olfactory neuron stochastically expresses one of similar to1000 odorant receptors. The total population of these neurons therefore consists of similar to1,000 distinct subpopulations, each of which are mosaically dispersed throughout one of four semi-annular zones in the nasal cavity. The axons of these different subpopulations are initially intermingled within the olfactory nerve. However, upon reaching the olfactory bulb, they sort out and converge so that axons expressing the same odorant receptor typically target one or two glomeruli. The spatial location of each of these 1800 glomeruli are topographically-fixed in the olfactory bulb and are invariant from animal to animal. Thus, while odorant receptors are expressed mosaically by neurons throughout the olfactory neuroepithelium their axons sort out, converge and target the same glomerulus within the olfactory bulb. How is such precise and reproducible topographic targeting generated? While some of the mechanisms governing the growth cone guidance of olfactory sensory neurons are understood, the cues responsible for homing axons to their target site remain elusive.
Resumo:
In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Topographical map of the city and county of New-York and the adjacent country : with views in the border of the principal buildings and interesting scenery of the island, engraved & printed by S. Stiles & Co. It was published by Sherman & Smith in 1845. Scale [ca. 1:16,000]. Covers Manhattan and adjacent portions of Brooklyn and New Jersey. This layer is image 2 of 3 total images of the three sheet source map, representing the middle portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as topography, ground cover, roads, drainage, selected public buildings, forts, city wards, squares, parks, and more. Relief is shown by hachures. Includes inset views: Broadway from the park -- Nieuw Amsterdam, 1659. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Topographical map of the city and county of New-York and the adjacent country : with views in the border of the principal buildings and interesting scenery of the island, engraved & printed by S. Stiles & Co. It was published by Sherman & Smith in 1845. Scale [ca. 1:16,000]. Covers Manhattan and adjacent portions of Brooklyn and New Jersey. This layer is image 1 of 3 total images of the three sheet source map, representing the southern portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as topography, ground cover, roads, drainage, selected public buildings, forts, city wards, squares, parks, and more. Relief is shown by hachures. Includes inset views: Broadway from the park -- Nieuw Amsterdam, 1659. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Topographical map of the city and county of New-York and the adjacent country : with views in the border of the principal buildings and interesting scenery of the island, engraved & printed by S. Stiles & Co. It was published by Sherman & Smith in 1845. Scale [ca. 1:16,000]. Covers Manhattan and adjacent portions of Brooklyn and New Jersey. This layer is image 3 of 3 total images of the three sheet source map, representing the northern portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as topography, ground cover, roads, drainage, selected public buildings, forts, city wards, squares, parks, and more. Relief is shown by hachures. Includes inset views: Broadway from the park -- Nieuw Amsterdam, 1659. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Red, black ink on tracing paper; topo. lines; unsigned; 75 x 37 cm.; Scale: 1" = 20' [from photographic copy by Lance Burgharrdt]
Resumo:
Relief shown by contours.
Resumo:
Bonebridge™ (BB) implantation relies on optimal anchoring of the bone-conduction implant in the temporal bone. Preoperative position planning has to account for the available bone thickness minimizing unwanted interference with underlying anatomical structures. This study describes the first clinical experience with a planning method based on topographic bone thickness maps (TBTM) for presigmoid BB implantations. The temporal bone was segmented enabling three-dimensional surface generation. Distances between the external and internal surface were color encoded and mapped to a TBTM. Suitable implant positions were planned with reference to the TBTM. Surgery was performed according to the standard procedure (n = 7). Computation of the TBTM and consecutive implant position planning took 70 min on average for a trained technician. Surgical time for implantations under passive TBTM image guidance was 60 min, on average. The sigmoid sinus (n = 5) and dura mater (n = 1) were exposed, as predicted with the TBTM. Feasibility of the TBTM method was shown for standard presigmoid BB implantations. The projection of three-dimensional bone thickness information into a single topographic map provides the surgeon with an intuitive display of the anatomical situation prior to implantation. Nevertheless, TBTM generation time has to be significantly reduced to simplify integration in clinical routine.
Resumo:
In February of 1983 a new terrestrial photogrammetric survey of Lewis Glacier (0° 9' S) has been made, from which the present topographic map has been produced in a scale of 1:5000. Simultaneously a survey of 1963 was evaluated giving a basis for computations of area and volume changes over the 20 year period: Lewis Glacier has lost 22 % of its area and 50 % of its volume. Based on maps and field observations of moraines 10 different stages were identified. Changes of area and volume can be determined for the periods after 1890, two older, undated stages are presumed to be of Little Ice Age-origin. Moderate losses from 1890 to 1920 were followed by strong, uninterrupted retreat up to present. In this respect Lewis Glacier behaves as all other equatorial glaciers that were closer examined. Compared to alpine glaciers the development was similar up to 1950. In the following years, however, the glaciers of the Alps gained mass and advanced while Lewis Glacier experienced its strongest losses from 1974 to 1983.
Resumo:
Relief shown by contours and hachures.
Resumo:
Optical profilometers based on light reflection may fail at surfaces presenting steep slopes and highly curved features. Missed light, interference and diffraction at steps, peaks and valleys are some of the reasons. Consequently, blind areas or profile artifacts may be observed when using common reflection micro-optical profilometers (confocal, scanning interferometers, etc…). The Topographic Optical Profilometry by Absorption in Fluids (TOPAF) essentially avoids these limitations. In this technique an absorbing fluid fills the gap between a reference surface and the surface to profile. By comparing transmission images at two different spectral bands we obtain a reliable topographic map of the surface. In this contribution we develop a model to obtain the profile under micro-optical observation, where high numerical aperture (NA) objectives are mandatory. We present several analytical and experimental results, validating the technique’s capabilities for profiling steep slopes and highly curved micro-optical surfaces with nanometric height resolution.
Resumo:
Relief shown by contours and hachures.
Resumo:
Relief shown by hachures. Depths shown by soundings.