987 resultados para Topic Modelling
Resumo:
This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.
Resumo:
Using the novel technique of topic modelling, this paper examines thematic patterns and their changes over time in a large corpus of corporate social responsibility (CSR) reports produced in the oil sector. Whereas previous research on corporate communications has been small-scale or interested in selected lexical aspects and thematic categories identified ex ante, our approach allows for thematic patterns to emerge from the data. The analysis reveals a number of major trends and topic shifts pointing to changing practices of CSR. Nowadays ‘people’, ‘communities’ and ‘rights’ seem to be given more prominence, whereas ‘environmental protection’ appears to be less relevant. Using more established corpus-based methods, we subsequently explore two top phrases - ‘human rights’ and ‘climate change’ that were identified as representative of the shifting thematic patterns. Our approach strikes a balance between the purely quantitative and qualitative methodologies and offers applied linguists new ways of exploring discourse in large collections of texts.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.
Resumo:
Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.
Resumo:
Many mature term-based or pattern-based approaches have been used in the field of information filtering to generate users’ information needs from a collection of documents. A fundamental assumption for these approaches is that the documents in the collection are all about one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, and this has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering has not been so well explored. Patterns are always thought to be more discriminative than single terms for describing documents. However, the enormous amount of discovered patterns hinder them from being effectively and efficiently used in real applications, therefore, selection of the most discriminative and representative patterns from the huge amount of discovered patterns becomes crucial. To deal with the above mentioned limitations and problems, in this paper, a novel information filtering model, Maximum matched Pattern-based Topic Model (MPBTM), is proposed. The main distinctive features of the proposed model include: (1) user information needs are generated in terms of multiple topics; (2) each topic is represented by patterns; (3) patterns are generated from topic models and are organized in terms of their statistical and taxonomic features, and; (4) the most discriminative and representative patterns, called Maximum Matched Patterns, are proposed to estimate the document relevance to the user’s information needs in order to filter out irrelevant documents. Extensive experiments are conducted to evaluate the effectiveness of the proposed model by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models
Resumo:
For traditional information filtering (IF) models, it is often assumed that the documents in one collection are only related to one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling was proposed to generate statistical models to represent multiple topics in a collection of documents, but in a topic model, topics are represented by distributions over words which are limited to distinctively represent the semantics of topics. Patterns are always thought to be more discriminative than single terms and are able to reveal the inner relations between words. This paper proposes a novel information filtering model, Significant matched Pattern-based Topic Model (SPBTM). The SPBTM represents user information needs in terms of multiple topics and each topic is represented by patterns. More importantly, the patterns are organized into groups based on their statistical and taxonomic features, from which the more representative patterns, called Significant Matched Patterns, can be identified and used to estimate the document relevance. Experiments on benchmark data sets demonstrate that the SPBTM significantly outperforms the state-of-the-art models.
Resumo:
This thesis addressed issues that have prevented qualitative researchers from using thematic discovery algorithms. The central hypothesis evaluated whether allowing qualitative researchers to interact with thematic discovery algorithms and incorporate domain knowledge improved their ability to address research questions and trust the derived themes. Non-negative Matrix Factorisation and Latent Dirichlet Allocation find latent themes within document collections but these algorithms are rarely used, because qualitative researchers do not trust and cannot interact with the themes that are automatically generated. The research determined the types of interactivity that qualitative researchers require and then evaluated interactive algorithms that matched these requirements. Theoretical contributions included the articulation of design guidelines for interactive thematic discovery algorithms, the development of an Evaluation Model and a Conceptual Framework for Interactive Content Analysis.
Resumo:
Multi-document summarization addressing the problem of information overload has been widely utilized in the various real-world applications. Most of existing approaches adopt term-based representation for documents which limit the performance of multi-document summarization systems. In this paper, we proposed a novel pattern-based topic model (PBTMSum) for the task of the multi-document summarization. PBTMSum combining pattern mining techniques with LDA topic modelling could generate discriminative and semantic rich representations for topics and documents so that the most representative and non-redundant sentences can be selected to form a succinct and informative summary. Extensive experiments are conducted on the data of document understanding conference (DUC) 2007. The results prove the effectiveness and efficiency of our proposed approach.
Resumo:
En este artículo se presenta un método para recomendar artículos científicos teniendo en cuenta su grado de generalidad o especificidad. Este enfoque se basa en la idea de que personas menos expertas en un tema preferirían leer artículos más generales para introducirse en el mismo, mientras que personas más expertas preferirían artículos más específicos. Frente a otras técnicas de recomendación que se centran en el análisis de perfiles de usuario, nuestra propuesta se basa puramente en el análisis del contenido. Presentamos dos aproximaciones para recomendar artículos basados en el modelado de tópicos (Topic Modelling). El primero de ellos se basa en la divergencia de tópicos que se dan en los documentos, mientras que el segundo se basa en la similitud que se dan entre estos tópicos. Con ambas medidas se consiguió determinar lo general o específico de un artículo para su recomendación, superando en ambos casos a un sistema de recuperación de información tradicional.
Resumo:
In clinical documents, medical terms are often expressed in multi-word phrases. Traditional topic modelling approaches relying on the “bag-of-words” assumption are not effective in extracting topic themes from clinical documents. This paper proposes to first extract medical phrases using an off-the-shelf tool for medical concept mention extraction, and then train a topic model which takes a hierarchy of Pitman-Yor processes as prior for modelling the generation of phrases of arbitrary length. Experimental results on patients’ discharge summaries show that the proposed approach outperforms the state-of-the-art topical phrase extraction model on both perplexity and topic coherence measure and finds more interpretable topics.
Resumo:
This paper investigates the effect of topic dependent language models (TDLM) on phonetic spoken term detection (STD) using dynamic match lattice spotting (DMLS). Phonetic STD consists of two steps: indexing and search. The accuracy of indexing audio segments into phone sequences using phone recognition methods directly affects the accuracy of the final STD system. If the topic of a document in known, recognizing the spoken words and indexing them to an intermediate representation is an easier task and consequently, detecting a search word in it will be more accurate and robust. In this paper, we propose the use of TDLMs in the indexing stage to improve the accuracy of STD in situations where the topic of the audio document is known in advance. It is shown that using TDLMs instead of the traditional general language model (GLM) improves STD performance according to figure of merit (FOM) criteria.
Resumo:
A major part of the support for fundamental research on aquatic ecosystems continues to be provided by the Natural Environment Research Council (NERC). Funds are released for ”thematic” studies in a selected special topic or programme. ”Testable Models of Aquatic Ecosystems” was a Special Topic of the NERC, initiated in 1995, the aim of which was to promote ecological modelling by making new links between experimental aquatic biologists and state-of-the-art modellers. The Topic covered both marine and freshwater systems. This paper summarises projects on aspects of the responses of individual organisms to the effects of environmental variability, on the assembly, permanence and resilience of communities, and on aspects of spatial models. The authors conclude that the NERC Special Topic has been highly successful in promoting the development and application of models, most particularly through the interplay between experimental ecologists and formal modellers.