1000 resultados para Tooth disease
Resumo:
We report an 18-month-old Charcot-Marie-Tooth type 1A (CMT1A) patient who developed a rapid-onset neuropathy, with proximal and distal weakness, and non-uniform nerve conduction studies. The neuropathy responded well to immunomodulation, confirming the coexistence of an inherited and an inflammatory neuropathy. Unexpected clinical and/ or electrophysiological manifestations in CMT1A patients should alert clinicians to concomitant inflammatory neuropathy. In addition, this association raises reflections about disease mechanism in CMT1A. Muscle Nerve 42: 598-600, 2010
Resumo:
Compound forms of Charcot-Marie-Tooth (CMT) disease have been recently associated with unusually severe neuropathies, an observation that prompted the proposition that the additive effects of two mutations should be searched in patients whose clinical severity falls outside the common CMT phenotypes. In this report, we present a father and a daughter with a very mild and unusual disease that segregates with two mutations in PMP22 gene, the 17p11.2-p12 duplication and a Ser72Leu point mutation. We propose that the deleterious effects of each mutation are partially compensated by the functional effect of the other.
Resumo:
El present estudi es basa en la descripció de quatre famílies portadores d’una mateixa mutació puntual (p.R120W) en el gen GDAP1 que segreguen d’una manera autosòmica dominant. Les trobades més rellevants foren: Els individus afectats varen tindre un començament més tardà i un fenotipus més lleu que les mutacions recessives del gen GDAP-1, però amb una gran variabilitat clínica. La Resonància Magnètica Muscular va demostrar una afectació selectiva de la musculatura intrínseca del peu i la part distal del panxell. El compartiment posterior superficial de la musculatura del panxell estava més afectat que el compartiment anterolateral.
Resumo:
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease.
Resumo:
Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.
Resumo:
Certain typical gait characteristics such as foot-drop and foot supination are well described in Charcot-Marie-Tooth disease. These are directly related to the primary disease and due to the weakness of ankle dorsiflexors and everters characteristic of this hereditary neuropathy. We analysed 16 subjects aged 8-52 years old (11 with type I, 5 with type II Charcot-Marie-Tooth disease) using three-dimensional gait analysis and identified kinematic features previously unreported. These patients showed a combination of tight tendo achillei, foot-drop, failure of plantar flexion and increased foot supination, but also presented with excessive internal rotation of the knee and/or tibia, knee hyperextension in stance, excessive external rotation at the hips and decreased hip adduction in stance (typical of a broad based gait). These proximal features could have been an adaptation to or consequence of the disrupted ankle and foot biomechanics, however a direct relation to the neuropathy is also possible since sub-normal muscle power was observed at the proximal levels in most subjects on both manual testing and kinetic analysis. Gait analysis is a useful tool in defining the characteristic gait of patients with Charcot-Marie-Tooth disease.
Resumo:
The Thr(118)Met substitution in the peripheral myelin protein 22 (PMP22) gene has been detected in a number of families with demyelinating Charcot-Marie-Tooth (CMT1) neuropathy or with the hereditary neuropathy with liability to pressure palsy, but in none of them has it consistently segregated with the peripheral neuropathy. We describe here a CMT1 family (a 63-year-old man, his brother and his niece) in which two mutations on different chromosomes were found in the PMP22 gene, the 17p duplication, detected by fluorescent semiquantitative polymerase chain reaction (PCR) of microsatellite markers localized within the duplicated region on chromosome 17p11.2-p12, and the Thr(118)Met substitution, detected by direct sequencing the four coding exons of the PMP22 gene. A genotype/phenotype correlation study showed that the neuropathy segregates with the duplication and that the amino acid substitution does not seem to modify the clinical characteristics or the severity of the peripheral neuropathy. We did not find any evidence to characterize this substitution as a polymorphism in the population studied and we propose that the high frequency reported for this point mutation in the literature suggests that the Thr(118)Met substitution may be a hotspot for mutations in the PMP22 gene.
Resumo:
Avaliou-se o comprometimento funcional de pacientes com Charcot-Marie-Tooth provenientes da duplicação 17p11.2-p12 (CMT1A), utilizando o SF-36, que é um questionário para medir a qualidade de vida. Vinte e cinco pacientes de ambos os sexos com idades ≥10 anos e diagnóstico molecular de CMT1A foram selecionados. Idade, sexo, condições sociodemográficas e profissionais foram pareados com o Grupo Controle (sem histórico familiar de neuropatia). Os resultados mostraram que o maior impacto da CMT1A na qualidade de vida ocorreu nos domínios social e emocional dos pacientes avaliados. A capacidade funcional também tende a ser significativamente afetada, enquanto outros indicadores de deficiência física foram preservados. Por fim, os aspectos sociais e emocionais dos pacientes acometidos por CMT1A costumam ser negligenciados na assistência médica prestada aos pacientes brasileiros, e devem ser melhor compreendidos a fim de oferecer uma assistência global à saúde, resultando em adequada qualidade de vida.
Resumo:
Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: We describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.
Resumo:
Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: we describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.
Resumo:
Mutations of the mitofusin 2 (MFN2) gene have been reported to be the most common cause of the axonal form of Charcot Marie Tooth disease (CMT). The aim of this study was to describe a de novo MFN2 p.R104W mutation and characterize the associated phenotype. We screened the entire coding region of MFN2 gene and characterized its clinical phenotype, nerve conduction studies and sural nerve biopsy. Neuropsychological tests and brain MRI were also performed. A de nova mutation was found in exon 4 (c.310C > T; p.R104W). In addition to a severe and early onset axonal neuropathy, the patient presented learning problems, obesity, glucose intolerance, leukoencephalopathy, brain atrophy and evidence of myelin involvement and mitochondrial structural changes on sural nerve biopsy. These results suggest that MFN2 p.R104W mutation is as a hot-spot for MFN2 gene associated to a large and complex range of phenotypes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transgenic mouse expressing either a mutated (R94Q) or wild-type form of human mitofusin 2 in neurons to evaluate whether the R94Q mutation was sufficient for inducing a Charcot-Marie-Tooth disease type 2A phenotype. Only mice expressing mitofusin 2(R94Q) developed locomotor impairments and gait defects thus mimicking the Charcot-Marie-Tooth disease type 2A neuropathy. In these animals, the number of mitochondria per axon was significantly increased in the distal part of the sciatic nerve axons with a diameter smaller than 3.5 microm. Importantly, the analysis of R94Q transgenic animals also revealed an age-related shift in the size of myelinated axons leading to an over-representation of axons smaller than 3.5 microm. Together these data suggest a link between an increased number of mitochondria in axons and a shift in axonal size distribution in mitofusin 2(R94Q) transgenic animals that may contribute to their neurological phenotype.
Resumo:
The advantages and disadvantages of maintaining the periodontal ligament (PDL) in immediate replantation as well as chemical treatment of the root surface have been a matter of discussion because the vitality of such tissue in surgery is always questioned. This study evaluated the effects of conserving the tooth in sodium fluoride and the removal of the PDL before replantation of incisors in rats. There was more cementum-dentin resorption in the group with the PDL. The group without the PDL showed more discreet resorption, repair occurred through the newly formed bone tissue in the PDL space and ankylosis was more extensive than in the group with the PDL.