962 resultados para Tooth color
Resumo:
Purpose: The use of different light sources as an adjunct to in-office bleaching has been questioned. Thus, the aim of this study was to evaluate the color changes of teeth after application of bleaching techniques with different products, with and without activation by a LED-laser system. Methods: Twenty-four bovine teeth surfaces were submitted to three bleaching techniques with two commercially available 35% hydrogen peroxide bleaching agents (n=8). The specimens were immersed in red wine for 48 h at 37°C and submitted to the bleaching techniques. Color changes were measured before and after staining as well as immediately after and 24 h after the bleaching treatments, with two different methods of color evaluation, software ScanWhite V1.1 and intra-oral spectrophotometer (Vita Easyshade). Data were analyzed by ANOVA and Kruskal-Wallis test. Results: The statistical analysis showed that there was no statistically significant difference at 5% of significance level between the different groups, independently of the evaluation time, evaluation methods or the use of LED-laser systems. Conclusion: The results suggested that the use of light in the bleaching techniques did not influence the color changes. Copyright: © 2011 Roberto et al.
Resumo:
Developmental defects involving color alteration of enamel frequently compromise the esthetic appearance of the tooth. The resin infiltration technique represents an alternative treatment for color masking of these lesions and uniformization of tooth color. This technique is considered relatively simple and microinvasive, since only a minimal portion of enamel is removed. This article illustrates the color-masking effect with resin infiltration of fluorosis and traumatic hypomineralization lesions with a case series. The final esthetic outcomes demonstrated the ability of the resin infiltrant to mask the color of white developmental defect lesions, resulting in satisfactory clinical esthetic improvements. However, in more severe cases, the color-masking effect was not complete.
Resumo:
Superficial irregularities and certain intrinsic stains on the dental enamel surfaces can be resolved by enamel microabrasion, however, treatment for such defects need to be confined to the outermost regions of the enamel surface. Dental bleaching and resin-based composite repair are also often useful for certain situations for tooth color corrections. This article presented and discussed the indications and limitations of enamel microabrasion treatment. Three case reports treated by enamel microabrasion were also presented after 11, 20 and 23 years of follow-ups.
Resumo:
The aim of the present study was to assess the effectiveness and adverse effects on dental enamel caused by nightguard vital bleaching with 10% carbamide peroxide. This was accomplished through the interaction of researchers from different areas such as dentistry, materials engineering and physics. Fifty volunteers took part in the doubleblind randomized controlled clinical trial. They were allocated to an experimental group that used Opalescence PF 10% (OPA) and a control group that used a placebo gel (PLA). Fragments of human dental enamel from the vestibular surface of healthy premolars, extracted for orthodontic reasons, were fixed to the vestibular surface of the first upper molars of the volunteers for in situ observation. Bleaching was performed at night for 21 days. The observation periods included Baseline (BL), T0 (21 days), T30 (30 days after treatment) and T180 (180 days after treatment, only for the OPA group). Tooth color was assessed by comparing it with the Vita® scale and by the degree of satisfaction expressed by the volunteer. We also assessed adverse clinical effects, dental sensitivity and gingival bleeding. The study of adverse effects on enamel was conducted in vivo and in situ, using the DIAGNOdent® laser fluorescence device to detect mineral loss. Scanning electron microscopy (SEM) was used to check for superficial morphological alterations, energy dispersive spectrophotometry (EDS) to semiquantitatively assess chemical composition using the Ca/P ratio, and the x-ray diffraction (XRD) technique to observe alterations in enamel microstructure. The results showed that nightguard vital bleaching with 10% carbamide peroxide was effective in 96% of the cases, versus 8% for the PLA group. Dental sensitivity was present in 36% (9/25) of the cases. There was no significant association between gingival bleeding and the type of gel used (p = 1.00). In vivo laser fluorescence analysis showed no difference in values for the control group, whereas in the OPA group there was a statistically significant difference between baseline values in relation to the subsequent periods (p<0.01), with lower mean values for post-bleaching times. There was a significant difference between the groups for times T0 and T30. Micrographic analysis showed no enamel surface alterations related to the treatment performed. No significant alteration in Ca/P ratio was observed in the OPA group (p = 0.624) or in the PLA group (p = 0.462) for each of the observation periods, nor between the groups studied (p=0.102). The XRD pattern for both groups showed the presence of three-phase Hydroxyapatite according to JCPDS files (9-0432[Ca5(PO4)3(OH)], 18-0303[Ca3(PO4)2.xH2O] and 25-0166[Ca5(PO4)3(OH, Cl, F)]). No other peak associated to other phases was found, independent of the group analyzed, which reveals there was no disappearance, nucleation or phase transformation. Neither was there any alteration in peak pattern location. With the methodology and protocol used in this study, nightguard vital bleaching with 10% carbamide peroxide proved to be an effective and safe procedure for dental enamel
Resumo:
The aim of this study was to analyze the color alterations performed by the CIE L*a*b* system in the digital imaging of shade guide tabs, which were obtained photographically according to the automatic and manual modes. This study also sought to examine the observers' agreement in quantifying the coordinates. Four Vita Lumin Vaccum shade guide tabs were used: A3.5, B1, B3 and C4. An EOS Canon digital camera was used to record the digital images of the shade tabs, and the images were processed using Adobe Photoshop software. A total of 80 observations (five replicates of each shade according to two observers in two modes, specifically, automatic and manual) were obtained, leading to color values of L*, a* and b*. The color difference (AE) between the modes was calculated and classified as either clinically acceptable or unacceptable. The results indicated that there was agreement between the two observers in obtaining the L*, a* and b* values related to all guides. However, the B1, B3, and C4 shade tabs had AE values classified as clinically acceptable (Delta E = 0.44, Delta E = 2.04 and Delta E = 2.69, respectively). The A3.5 shade tab had a AE value classified as clinically unacceptable (Delta E = 4.17), as it presented higher values for luminosity in the automatic mode (L* = 54.0) than in the manual mode (L* = 50.6). It was concluded that the B1, B3 and C4 shade tabs can be used at any of the modes in digital camera (manual or automatic), which was a different finding from that observed for the A3.5 shade tab.
Resumo:
OBJETIVO: Avaliar se fontes de luz aumentam a eficácia do peróxido de hidrogênio na técnica de clareamento profissional. METODOLOGIA: Foram empregados 60 dentes incisivos bovinos, com dimensões coronárias e radiculares padronizadas a partir do limite amelo-cementário, sendo descartada a porção lingual. Os corpos-de-prova (cp) foram limpos em ultra-som por 20 min e a dentina condicionada com H3PO4 a 38% por 15 s, sendo os (cp) imersos em solução de café solúvel a 25% por duas semanas. A dentina foi impermeabilizada com esmalte e os (cp) divididos em 5 grupos, sendo a cor inicial mensurada através do espectofotômetro-EasyShade (VITA). Todos os (cp) receberam três aplicações por 10 min do gel clareador Opalescence Xtra-Boost (Ultradent) conforme segue: Grupo 1 - controle, não recebeu fotoativação, Grupo 2 - ativado com luz halôgena, Grupo 3 - ativado com LED azul/LASER, Grupo 4 - ativado com LED verde/LASER e Grupo 5 - ativado com LED vermelho. Após o clareamento foi mensurada a variação de cor E, a*, b*e L* e as referentes à escala de cor Vita Clássico. Os dados foram submetidos à análise de variância, teste de Tukey e de Dunn (α=5%). RESULTADOS: A diferença geral da cor foi reduzida quando se empregou LED Azul e Luz Halógena, sendo que o desempenho do peróxido de hidrogênio a 38% foi intensificado dependendo da fonte de luz utilizada. A avaliação quantitativa de cor, obtida por espectrofotômetro e pela escala de cor Vita Clássico, foram coincidentes. CONCLUSÃO: O tipo de fonte de luz empregada interfere na eficácia do agente clareador.
Resumo:
Dental bleaching represents an effective, conservative, and relatively low-cost method for improving the appearance of discolored pulpless teeth. Among the bleaching techniques, the walking bleach technique with sodium perborate associated with water or hydrogen peroxide stands out because of its esthetic results and safety. A modified walking bleach technique with the use of 37% carbamide peroxide as the bleaching agent is presented. Additionally, the adverse effects of dental bleaching in the following restorative procedures are discussed, showing the advantages with the use of 37% carbamide peroxide.
Resumo:
Objectives: This study aimed to evaluate and correlate the efficacy and cytotoxicity of a 35 % hydrogen peroxide (HP) bleaching gel after different application times on dental enamel. Materials and methods: Enamel/dentin disks in artificial pulp chambers were placed in wells containing culture medium. The following groups were formed: G1, control (no bleaching); G2 and G3, three or one 15-min bleaching applications, respectively; and G4 and G5, three or one 5-min bleaching applications, respectively. Extracts (culture medium with bleaching gel components) were applied for 60 min on cultured odontoblast-like MDPC-23 cells. Cell metabolism (methyl tetrazolium assay) (Kruskal-Wallis/Mann-Whitney; α = 5 %) and cell morphology (scanning electron microscopy) were analyzed immediately after the bleaching procedures and the trans-enamel and trans-dentinal HP diffusion quantified (one-way analysis of variance/Tukey's test; α = 5 %). The alkaline phosphatase (ALP) activity was evaluated 24 h after the contact time of the extracts with the cells (Kruskal-Wallis/Mann-Whitney; α = 5 %). Tooth color was analyzed before and 24 h after bleaching using a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system (Kruskal-Wallis/Mann-Whitney; α = 0.05). Results: Significant difference (p < 0.05) in cell metabolism occurred only between G1 (control, 100 %) and G2 (60.6 %). A significant decrease (p < 0.05) in ALP activity was observed between G2, G3, and G4 in comparison with G1. Alterations on cell morphology were observed in all bleached groups. The highest values of HP diffusion and color alterations were observed for G2, with significant difference among all experimental groups (p < 0.05). G3 and G4 presented intermediate color change and HP diffusion values with no statistically significant differences between them (p > 0.05). The lowest amount of HP diffusion was observed in G5 (p < 0.05), which also exhibited no significant color alteration compared to the control group (p > 0.05). Conclusions: HP diffusion through dental tissues and its cytotoxic effects were proportional to the contact time of the bleaching gel with enamel. However, shorter bleaching times reduced bleaching efficacy. Clinical relevance: Shortening the in-office tooth bleaching time could be an alternative to minimize the cytotoxic effects of this clinical procedure to pulp tissue. However, the reduced time of bleaching agent application on enamel may not provide adequate esthetic outcome. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
In cases of identification of bones, skeletal segments or isolated bones, searching for biotypologic diagnostic data to estimate an individual's age enables comparing these data with those of missing individuals. Enamel, dentin and pulp undergo remarkable changes during an individual's life. The enamel becomes more mineralized, smoother and thinner, and deteriorates because of physiological and pathological factors. Dental pulp decreases in volume due to the deposition of secondary dentin; thus, the dentin becomes thicker with time. In natural teeth, the fluorescence phenomenon occurs in dentin and enamel and changes in those tissues may alter the expression of the natural tooth color. The aim of this study was to assess the correlation between age and teeth fluorescence for individuals from different age groups. The sample consisted of 66 randomly selected Brazilians of both genders aged 7-63 years old. They were divided into 6 groups: Group 1 - aged 7-12 years, Group 2 - aged 13-20 years, Group 3 - aged 21-30 years, Group 4 - aged 31-40 years, Group 5 - aged 41-50 years and Group 6 - aged between 51 and 63 years. Upper right or left central incisors were used for the study. Restored and aesthetic rehabilitated teeth were excluded from the sample. The measurement of tooth fluorescence was carried out via computer analysis of digital images using the software ScanWhite DMC/Darwin Systems - Brazil. It was observed that dental fluorescence decreases when comparing the age groups 21-30, 31-40, 41-50 and 51-63 years. The results also showed that there is a statistically significant difference between the groups 41-50 years and 21-30 years (p=. 0.005) and also among the group 51-63 years and all other groups (p< 0.005). It can be concluded that dental fluorescence is correlated with age and has a similar and stable behavior from 7 to 20 years of age. It reaches its maximum expected value at the age of 26.5 years and thereafter decreases. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Context: The possibility of bleaching vital teeth with peroxide-based products considerably revolutionized esthetic dentistry. Aim: The aim of this clinical study was to evaluate tooth color change and dental sensitivity after exposure to preloaded film containing a 10% hydrogen peroxide whitening system (Opalescence Trθswhite Supreme). Materials and Methods: A total of 13 volunteers, aged 18 to 25 years, participated in this study. The patients used the whitening system once a day for 60 minutes during the 8-day study. For maxillary incisors and canines, the color change was visually evaluated with the Vita color scale before, immediately, and six months after the treatment. Tooth sensitivity was evaluated during the daily gel applications. All whitening applications were done in office and under the supervision of a dental professional. Statistical Analysis Used: The results were analyzed using the Friedman Test (nonparametric repeated measures ANOVA) at a level of 5%, and Dunn's Multiple Comparison Test at the level of 5%. Results: It was verified that the original mean color values observed at the baseline analysis differed significantly from those observed immediately after bleaching, as well as from those seen in the analysis at six months ( P = 0.001). There was no significant difference between the mean color values observed in the immediate time and in the analysis at six months ( P = 0.474). No tooth sensitivity was observed in any patients. Conclusion: It was concluded that the bleaching technique using the 10% hydrogen peroxide system was effective in a short period of time without tooth sensitivity during applications.
Resumo:
This is a clinical case report of a patient who presented with dental stains in the buccal and proximal aspects of the anterior teeth. Buccal stains were removed using the enamel microabrasion technique, and vital tooth bleaching with carbamide peroxide was also performed. Restorative procedures employing composite resin were done for a better result in the proximal aspect of teeth. Clinical significance: The authors observed the combination of these esthetic techniques improved the patient's smile. Today, dental esthetics attempts to imitate natural teeth by making them white, well-shaped, and aligned with no spots. This has enabled the development of several esthetic techniques, such as microabrasion to remove dental enamel surface stains and surface irregularities,1-6 and vital tooth bleaching to treat yellowish teeth.7 The enamel microabrasion technique uses different abrasive agents associated with chemical solutions,1,2,4,6 allowing the removal of intrinsic, hard-texture stains, and different coloring spots on the enamel surface, as well as correction of irregularities on the dental buccal surface.1,8 The various microabrasive products include the Opalustre® (Ultradent Products, http://www.ultradent.com)or Prema® Compound (Premier Dental Products, http://www.premusa.com), a low-concentration hydrochloric acid product associated with silica microparticles that is certainly effective for microabrasion technique,4,6,9,10 providing a good safety profile for the patient and professional. The microabrasion technique also promotes micro-reduction on the adamantine surface.4,5,10 In some cases, after its completion, microabrasion may cause teeth to become darker or yellowish because of the thinner remaining enamel surface, leading to more evident observation of the dentinal tissue, which in general determines tooth color. In these clinical conditions, correction of the color pattern of dental elements can be obtained with carbamide peroxide products applied in custom trays, such as the bleaching products Whiteness Perfect at 10% or 16% (FGM Productos Odontologicos, http://www.fgm.ind.br) or Opalescence® at 10% or 15% (Ultradent Products), with a considerable margin of clinical success, provided it is well indicated, well performed, and supervised by the professional.4,6,9,10 Considering all the aforementioned aspects, the authors present a clinical case about a dental-enamel microabrasion technique used to remove buccal enamel surface stains associated with dental vital bleaching and restorative procedures in the proximal aspect of anterior teeth. - See more at: https://www.dentalaegis.com/cced/2010/08/different-esthetic-techniques-used-in-combination-to-recover-the-smile#sthash.McFoH7El.dpuf