978 resultados para Tolman-Oppenheimer-Volkoff equation
Resumo:
Lo scopo di questa tesi consiste nello studio delle proprietà generali di sistemi compatti statici e a simmetria sferica nell'ambito dei modelli che prevedono l'esistenza di dimensioni spaziali aggiuntive e che sono comunemente dette del mondo-brana. Si comincerà con una breve descrizione di teorie gravitazionali a più dimensioni, in particolare si parte dalla teoria di Kaluza-Klein, per arrivare ai modelli ADD(Arkani-Hamed, Dimopoulos, Dvali) e infine a quelli RS(Rundall, Sundrum)che interessano direttamente questo studio. Per questi modelli, vengono quindi ricavate le equazioni di campo multidimensionali dall'azione di Einstein-Hilbert e successivamente le si proietta, facendo uso delle equazioni di Gauss e Codazzi, su una brana massiva immersa in un “bulk” cinquedimensionale. Infine si studiano le equazioni di campo di Einstein quadridimensionali per una generica metrica che può servire a descrive stelle statiche, a simmetria sferica e costituite da un fluido perfetto isotropo. Successivamente si ripete la stessa analisi partendo dall'equazione di campo sulla brana e si confrontano i risultati nei due diversi contesti.
Resumo:
Este trabalho tem como objetivo o estudo da matéria nuclear a altas densidades considerando-se as fases hadrônica e de quarks à temperatura nula e finita, com vistas a aplicações no estudo de propriedades estáticas globais de estrelas compactas. Parte dos cálculos apresentados nesta dissertação foram realizados por diferentes autores. Entretanto, em geral, estes trabalhos limitaram-se ao estudo da matéria nuclear em regiões de densidades e temperaturas específicas. Este estudo visa, por sua vez, o desenvolvimento de um tratamento amplo e consistente para estes sistemas, considerando-se diferentes regimes de densidade e temperatura para ambas as fases, hadrônica e de quarks. Buscamos com isso adquirir conhecimento suficiente que possibilite, não somente a ampliação do escopo dos modelos considerados, como também o desenvolvimento, no futuro, de um modelo mais apropriado à descrição de propriedades estáticas e dinâmicas de estrelas compactas. Ainda assim, este trabalho apresenta novos aspectos e resultados inéditos referentes ao estudo da matéria nuclear, como descrevemos a seguir. No estudo da matéria nuclear na fase hadrônica, consideramos os modelos da teoria quântica de campos nucleares desenvolvidos por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, e conhecidos, respectivamente, como Hadrodinâmica Quântica, ZM e Não-Linear. Nestes modelos a matéria nuclear é descrita a partir de uma formulação lagrangeana com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear Neste estudo consideramos inicialmente a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como por exemplo, a massa efetiva do núcleon na matéria nuclear simétrica e de nêutrons. A equação de estado da matéria de nêutrons possibilita a descrição de propriedades estáticas globais de estrelas compactas, como sua massa e raio, através da sua incorporação nas equações de Tolman, Oppenheimer e Volkoff (TOV). Os resultados obtidos nestes cálculos estão em plena concordância com os resultados apresentados por outros autores. Consideramos posteriormente o estudo da matéria nuclear com graus de liberdade de bárions e mésons à temperatura finita, com particular atenção na região de transição de fase. Para este estudo, incorporamos aos modelos considerados, o formalismo da mecânica estatística à temperatura finita. Os resultados obtidos, para as propriedades da matéria nuclear à temperatura finita, concordam também com os resultados obtidos por outros autores. Um aspecto inédito apresentado neste trabalho refere-se à incorporação de valores para os pontos críticos da transição de fase, ainda não determinados por outros autores. O comportamento do calor específico também é analisado de forma inédita nesta dissertação no tratamento utilizado com os modelos Não-Linear e ZM. Utilizamos a equação de estado da matéria de nêutrons à temperatura finita nas equações TOV, determinando propriedades globais de uma estrela protoneutrônica Observamos neste trabalho que ocorre um aumento da massa máxima da estrela com o aumento da temperatura, comportamento este já previsto por outros autores em diferentes modelos. Posteriormente incorporamos ao formalismo à temperatura finita, o equilíbrio químico, a presença de graus de liberdade leptônicos para elétrons e múons e a neutralidade de carga. Apresentamos nesta etapa do trabalho, uma forma alternativa para a incorporação destes ingredientes, baseada na determinação de uma fração relativa entre os potenciais químicos de prótons e nêutrons, à temperatura nula, extendendo este resultado à temperatura finita. Este procedimento permite a determinação da distribuição de núcleons e léptons no interior de uma estrela protoneutrônica, onde incluímos ainda a presença de neutrinos confinados. No estudo da matéria de quarks, consideramos o modelo de sacola do Massachussets Institute of Technology (MIT). Incorporando as equações TOV neste estudo, determinamos propriedades globais de estrelas de quarks, bem como a distribuição dos diferentes sabores de quarks no interior estelar. Como principal resultado, obtivemos uma equação de estado geral para a matéria hadrônica e de quarks, introduzida nas equações TOV, e analisamos a existência de estrelas híbridas. Os resultados obtidos nesta etapa do trabalho são totalmente coerentes com aqueles obtidos por outros autores.
Resumo:
In questa tesi viene affrontato il problema della stabilità delle strutture stellari da un punto di vista relativistico. La stella è approssimata ad un fluido perfetto a simmetria sferica, e le equazioni che ne governano la struttura vengono ricavate grazie alle risoluzione delle equazioni di campo della relatività generale in questo caso particolare. L'approssimazione di fluido perfetto permette anche di ricavare un'equazione di stato che lega densità di energia e pressione tramite un parametro, detto parametro di rigidità. Un'analisi del comportamento della materia al variare della densità consente di stabilire l'andamento di questo parametro, mentre uno studio delle piccole oscillazioni radiali della stella permette di stabilire quali sono i valori del parametro che consentono un equilibrio stabile. La stabilità risulta possibile in due differenti intervalli di densità, che corrispondono ai due tipici stadi finali dell'evoluzione stellare: nana bianca e stella di neutroni. Grazie alle equazioni che descrivono la struttura stellare è possibile stabilire, nei due intervalli di densità, quale sia il valore che la massa della stella non può superare: si ricavano il limite di Chandrasekhar e il limite di Oppenheimer-Volkoff. Infine viene mostrato come la relatività generale imponga un limite assoluto alla stabilità di una distribuzione di materia, sostenuta da una qualsiasi forza della natura: superato questo confine, la materia non può fare altro che collassare in un buco nero.
Resumo:
In this work, we propose an improvement of the classical Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in mesoporous systems. The primary idea of this improvement is to employ the Gibbs-Tolman-Koenig-Buff equation to predict the surface tension changes in mesopores. In addition, the statistical film thickness (so-called t-curve) evaluated accurately on the basis of the adsorption isotherms measured for the MCM-41 materials is used instead of the originally proposed t-curve (to take into account the excess of the chemical potential due to the surface forces). It is shown that the aforementioned modifications of the original DBdB theory have significant implications for the pore size analysis of mesoporous solids. To verify our improvement of the DBdB pore size analysis method (IDBdB), a series of the calcined MCM-41 samples, which are well-defined materials with hexagonally ordered cylindrical mesopores, were used for the evaluation of the pore size distributions. The correlation of the IDBdB method with the empirically calibrated Kruk-Jaroniec-Sayari (KJS) relationship is very good in the range of small mesopores. So, a major advantage of the IDBdB method is its applicability for small mesopores as well as for the mesopore range beyond that established by the KJS calibration, i.e., for mesopore radii greater than similar to4.5 nm. The comparison of the IDBdB results with experimental data reported by Kruk and Jaroniec for capillary condensation/evaporation as well as with the results from nonlocal density functional theory developed by Neimark et al. clearly justifies our approach. Note that the proposed improvement of the classical DBdB method preserves its original simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the mean pore size by the powder X-ray diffraction method.
Resumo:
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 ºC) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 ºC (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 ºC, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 ºC. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This note addresses the relation between the differential equation of motion and Darcy`s law. It is shown that, in different flow conditions, three versions of Darcy`s law can be rigorously derived from the equation of motion.
Resumo:
It is well known that structures subjected to dynamic loads do not follow the usual similarity laws when the material is strain rate sensitive. As a consequence, it is not possible to use a scaled model to predict the prototype behaviour. In the present study, this problem is overcome by changing the impact velocity so that the model behaves exactly as the prototype. This exact solution is generated thanks to the use of an exponential constitutive law to infer the dynamic flow stress. Furthermore, it is shown that the adopted procedure does not rely on any previous knowledge of the structure response. Three analytical models are used to analyze the performance of the technique. It is shown that perfect similarity is achieved, regardless of the magnitude of the scaling factor. For the class of material used, the solution outlined has long been sought, inasmuch as it allows perfect similarity for strain rate sensitive structures subject to impact loads. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a study on the role of the long-range term of excess Gibbs energy models in the modeling of aqueous systems containing polymers and salts is presented. Four different approaches on how to account for the presence of polymer in the long-range term were considered, and simulations were conducted considering aqueous solutions of three different salts. The analysis of water activity curves showed that, in all cases, a liquid-phase separation may be introduced by the sole presence of the polymer in the long-range term, regardless of how it is taken into account. The results lead to the conclusion that there is no single exact solution for this problem, and that any kind of approach may introduce inconsistencies.
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A method based on a specific power-law relationship between the hydraulic head and the Boltzmann variable was recently presented. We generalized this relationship to a range of powers and extended the solution to include the saturated zone. As a result, the new solution satisfies the Bruce and Klute equation exactly.