83 resultados para Tobit
Resumo:
Objective: Health status measures usually have an asymmetric distribution and present a highpercentage of respondents with the best possible score (ceiling effect), specially when they areassessed in the overall population. Different methods to model this type of variables have beenproposed that take into account the ceiling effect: the tobit models, the Censored Least AbsoluteDeviations (CLAD) models or the two-part models, among others. The objective of this workwas to describe the tobit model, and compare it with the Ordinary Least Squares (OLS) model,that ignores the ceiling effect.Methods: Two different data sets have been used in order to compare both models: a) real datacomming from the European Study of Mental Disorders (ESEMeD), in order to model theEQ5D index, one of the measures of utilities most commonly used for the evaluation of healthstatus; and b) data obtained from simulation. Cross-validation was used to compare thepredicted values of the tobit model and the OLS models. The following estimators werecompared: the percentage of absolute error (R1), the percentage of squared error (R2), the MeanSquared Error (MSE) and the Mean Absolute Prediction Error (MAPE). Different datasets werecreated for different values of the error variance and different percentages of individuals withceiling effect. The estimations of the coefficients, the percentage of explained variance and theplots of residuals versus predicted values obtained under each model were compared.Results: With regard to the results of the ESEMeD study, the predicted values obtained with theOLS model and those obtained with the tobit models were very similar. The regressioncoefficients of the linear model were consistently smaller than those from the tobit model. In thesimulation study, we observed that when the error variance was small (s=1), the tobit modelpresented unbiased estimations of the coefficients and accurate predicted values, specially whenthe percentage of individuals wiht the highest possible score was small. However, when theerrror variance was greater (s=10 or s=20), the percentage of explained variance for the tobitmodel and the predicted values were more similar to those obtained with an OLS model.Conclusions: The proportion of variability accounted for the models and the percentage ofindividuals with the highest possible score have an important effect in the performance of thetobit model in comparison with the linear model.
Resumo:
Tesis (Maestría en Economía con Especialidad en Economía Industrial) U.A.N.L.
Resumo:
Several Authors Have Discussed Recently the Limited Dependent Variable Regression Model with Serial Correlation Between Residuals. the Pseudo-Maximum Likelihood Estimators Obtained by Ignoring Serial Correlation Altogether, Have Been Shown to Be Consistent. We Present Alternative Pseudo-Maximum Likelihood Estimators Which Are Obtained by Ignoring Serial Correlation Only Selectively. Monte Carlo Experiments on a Model with First Order Serial Correlation Suggest That Our Alternative Estimators Have Substantially Lower Mean-Squared Errors in Medium Size and Small Samples, Especially When the Serial Correlation Coefficient Is High. the Same Experiments Also Suggest That the True Level of the Confidence Intervals Established with Our Estimators by Assuming Asymptotic Normality, Is Somewhat Lower Than the Intended Level. Although the Paper Focuses on Models with Only First Order Serial Correlation, the Generalization of the Proposed Approach to Serial Correlation of Higher Order Is Also Discussed Briefly.
Resumo:
Fixed transactions costs that prohibit exchange engender bias in supply analysis due to censoring of the sample observations. The associated bias in conventional regression procedures applied to censored data and the construction of robust methods for mitigating bias have been preoccupations of applied economists since Tobin [Econometrica 26 (1958) 24]. This literature assumes that the true point of censoring in the data is zero and, when this is not the case, imparts a bias to parameter estimates of the censored regression model. We conjecture that this bias can be significant; affirm this from experiments; and suggest techniques for mitigating this bias using Bayesian procedures. The bias-mitigating procedures are based on modifications of the key step that facilitates Bayesian estimation of the censored regression model; are easy to implement; work well in both small and large samples; and lead to significantly improved inference in the censored regression model. These findings are important in light of the widespread use of the zero-censored Tobit regression and we investigate their consequences using data on milk-market participation in the Ethiopian highlands. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Data augmentation is a powerful technique for estimating models with latent or missing data, but applications in agricultural economics have thus far been few. This paper showcases the technique in an application to data on milk market participation in the Ethiopian highlands. There, a key impediment to economic development is an apparently low rate of market participation. Consequently, economic interest centers on the “locations” of nonparticipants in relation to the market and their “reservation values” across covariates. These quantities are of policy interest because they provide measures of the additional inputs necessary in order for nonparticipants to enter the market. One quantity of primary interest is the minimum amount of surplus milk (the “minimum efficient scale of operations”) that the household must acquire before market participation becomes feasible. We estimate this quantity through routine application of data augmentation and Gibbs sampling applied to a random-censored Tobit regression. Incorporating random censoring affects markedly the marketable-surplus requirements of the household, but only slightly the covariates requirements estimates and, generally, leads to more plausible policy estimates than the estimates obtained from the zero-censored formulation
Resumo:
Giessen, Univ., Diss., 1894